WHITEHEAD GROUPS OF FREE ASSOCIATIVE ALGEBRAS

BY STEPHEN GERSTEN

Communicated by E. Dyer, September 28, 1964

Let R be a principal ideal domain, X a set, and Λ the free associative algebra over R on the set X. Then Λ is a supplemented algebra over R, where the augmentation $\epsilon_{\Lambda} \colon \Lambda \to R$ is the unique map of algebras extending $x \to 0$, $x \in X$, given by the universal property of Λ . We denote $\overline{K}_1(\Lambda) = \operatorname{coker} \eta_{\Lambda^*} \colon K_1(R) \to K_1(\Lambda)$, where $\eta \colon R \to \Lambda$ is the unit.¹

THEOREM 1. $\overline{K}_1(\Lambda) = 0$, or, equivalently, $\eta_{\Lambda^*}: K_1(R) \rightarrow K_1(\Lambda)$ is an isomorphism.

We remark that Theorem 1 applies to the case R=Z, the ring of integers, or R= any field. Since η_{Λ^*} is a monomorphism for functorial reasons ($\epsilon_{\Lambda}\eta_{\Lambda}=1: R \rightarrow R$), the two assertions of Theorem 1 are seen to be equivalent.

LEMMA 1. Any regular matrix T over Λ is equivalent by elementary operations to a regular matrix of the form

 $M = M_0 + M_1 x_1 + M_2 x_2 + \cdots + M_n x_n,$

where M_i $(0 \le i \le n)$ are matrices over R and x_1, x_2, \cdots, x_n are distinct elements of X.

The proof is a standard exercise and will be omitted (see also [3]). Using the notation of Lemma 1, if we apply ϵ_{Λ} , we see that M_0 is a regular matrix over R. Thus, $[M] = [M_0^{-1}M] \in \overline{K}_1(\Lambda)$, and $[M] \in \overline{K}_1(\Lambda)$ is represented by an $m \times m$ matrix of the form

(1)
$$N = 1 + N_1 x_1 + N_2 x_2 + \cdots + N_n x_n,$$

where N_i $(1 \le i \le n)$ are matrices over R, and x_1, x_2, \cdots, x_n are distinct elements of X.

LEMMA 2. The subalgebra (without unit) \Re , generated by N_1, N_2, \cdots, N_n , of the ring of endomorphisms E(R, m) of a free R-module of rank m, is nilpotent.

PROOF. Since N is regular, there is a matrix

¹ If R is a ring (associative, with unit), then $K_1(R) = GL(R)/\mathcal{E}(R)$ where GL(R)= dir_limit GL(n, R) and $\mathcal{E}(R) = dir_limit \mathcal{E}(n, R)$, where $\mathcal{E}(n, R)$ is the subgroup of GL(n, R) generated by elementary matrices (see Bass [1]).