AN EXPLICIT INVERSION FORMULA FOR FINITE-SECTION WIENER-HOPF OPERATORS¹

BY GLEN BAXTER AND I. I. HIRSCHMAN, JR. Communicated by A. Zygmund, July 14, 1964

Let T be the real numbers modulo 1 and α_0 the algebra of complex continuous functions $f(\theta)$ on T which have absolutely convergent Fourier series. For $f(\theta) \in \alpha_0$ we set

$$||f||_0 = \sum_{-\infty}^{\infty} |f(k)|$$

where

$$f(k) = \int_{T} f(\theta) e^{-2\pi i k \theta} d\theta.$$

For $f \in \alpha_0$ we define

$$E^{+}(n)f \cdot (\theta) = \sum_{k \ge n} f(k)e^{2\pi ik\theta},$$
$$E^{-}(n)f \cdot (\theta) = \sum_{k \le n} f(k)e^{2\pi ik\theta}.$$

DEFINITION. Let α be a Banach algebra of complex continuous functions $f(\theta)$ on T with norm $\|\cdot\|$. α will be said to be of type \mathfrak{M} if the following conditions are satisfied:

1. $\alpha_0 \supset \alpha$, $||f||_0 \leq ||f||$ for all $f \in \alpha$;

2. $e^{2\pi i k \theta} \in \alpha$ for $k=0, \pm 1, \pm 2, \cdots$, and the trigonometric polynomials are dense in α ;

3. there exists a constant M independent of n such that

$$|E^+(n)f|| \leq M||f||, \quad ||E^-(n)f|| \leq M||f||, \quad \text{all } f \in \mathfrak{A}.$$

For $c \in \alpha$ we define the finite-section Wiener-Hopf operators

$$W_{c}^{+}(n)f = E^{+}(0)E^{-}(n)cE^{+}(0)E^{-}(n)f,$$

$$W_{c}^{-}(n)f = E^{-}(0)E^{+}(-n)cE^{-}(0)E^{+}(-n)f.$$

Here $n \ge 0$. Our principal result is the identities below. These identities are algebraic in character and can be seen to hold in a much more general (even in a noncommutative) setting than that considered here. We have preferred to present them in a context requiring as few definitions and as little machinery as possible.

¹ This research was supported in part by the United States Air Force through the Air Force Office of Scientific Research and Development Command under Contract No. AF-AFOSR 63-381.