COBORDISM CLASSES OF SQUARES OF ORIENTABLE MANIFOLDS

BY PETER G. ANDERSON

Communicated by I. Singer, June 25, 1964
In this paper we give an outline of the following theorem. ${ }^{1}$ Full details will appear elsewhere.

Theorem. If M is an orientable manifold, then there exists a spin manifold N such that N is cobordant to $M \times M$ (in the unoriented sense). (For definitions and notation see [1] and [3].)

Following C. T. C. Wall [5] we construct a set of orientable manifolds whose cobordism classes generate the image of the "orientation ignoring homomorphism" $r: \Omega \rightarrow \mathfrak{N}$, and the theorem is then verified for each of these generators.

Some of these manifolds are certain complex projective spaces $C P^{n}$. As was noted in [2], $C P^{n} \times C P^{n}$ is cobordant to quaternionic projective space $H P^{n}$. Since $H P^{n}$ is always 3-connected it is a spin manifold.

A second type of manifold used is constructed as follows. Let λ be the canonical nontrivial line bundle over real projective space P^{n}, and ϵ^{m} the trivial m-plane bundle over P^{n}. Define $M(m, n)$ as the space of lines through the origin in each fibre of the Whitney-sum bundle $\boldsymbol{\lambda} \oplus \epsilon^{n} . M(m, n)$ is an orientable manifold if and only if m is odd and n is even, and certain of these manifolds are used as generators for $r(\Omega)$.

The third type of manifold used is denoted by

$$
M\left(m_{1}, n_{1} ; m_{2}, n_{2} ; \cdots ; m_{r+1}, n_{r+1}\right)
$$

where $r \geqq 1, m_{i}$ is odd and n_{i} is even for $i=1, \cdots, r+1$. This manifold is the total space of a certain fibre bundle over $S^{1} \times \cdots \times S^{1}(r$ factors), with fibre $M\left(m_{1}, n_{1}\right) \times \cdots \times M\left(m_{r+1}, n_{r+1}\right)$.

To prove the theorem for these last two types of manifolds we construct their "complex analogues" as follows. Let $c \lambda$ denote the canonical complex line-bundle over complex projective space $C P^{n}$, and $c \epsilon^{m}$ the trivial complex m-plane bundle over $C P^{n}$. Then $C M(m, n)$ is the space of complex lines through the origin in each fibre of $c \lambda \oplus c \epsilon^{m} . C M\left(m_{1}, n_{1} ; \cdots ; m_{r+1}, n_{r+1}\right)$ will be the total space of a fibre

[^0]
[^0]: ${ }^{1}$ This theorem was originally conjectured by J. Milnor in [2].

