AN EXTENSION OF THE MARCINKIEWICZ INTERPOLATION THEOREM TO LORENTZ SPACES¹

BY RICHARD A. HUNT

Communicated by A. Zygmund, June 22, 1964

The purpose of this paper is three-fold. First, the theorem of Marcinkiewicz on interpolation of operators (see [9, pp. 111-116]) is generalized to Lorentz spaces [5]. Second, this result is shown to be a rather easy consequence of a celebrated inequality of Hardy [2, pp. 245-246]:

THEOREM (HARDY). If $q \ge 1$, r > 0 and $f \ge 0$, then

(1)
$$\left(\int_{0}^{\infty} \left(\int_{0}^{t} f(y) \, dy \right)^{q} t^{-r-1} \, dt \right)^{1/q} \leq \frac{q}{r} \left(\int_{0}^{\infty} (yf(y))^{q} y^{-r-1} \, dy \right)^{1/q};$$

$$\left(\int_{0}^{\infty} \left(\int_{0}^{\infty} f(y) \, dy \right)^{q} t^{r-1} \, dt \right)^{1/q} \leq \frac{q}{r} \left(\int_{0}^{\infty} (yf(y))^{q} y^{r-1} \, dy \right)^{1/q}.$$

Third, previously open questions concerning the Marcinkiewicz Theorem are settled by showing our result is best possible.

Consider complex-valued, measurable functions f defined on a measure space (M, m). The distribution function of f is defined by

(2)
$$\lambda(y) = \lambda_f(y) = m\{x \in M : |f(x)| > y\}, \quad y > 0.$$

 $\lambda(y)$ is nonincreasing and continuous from the right. The nonincreasing rearrangement of f onto $(0, \infty)$ is then defined by

(3)
$$f^*(t) = \inf\{y > 0 : \lambda_f(y) \le t\}, \quad t > 0.$$

 $f^*(t)$ is also continuous from the right and has the same distribution function as f. The Lorentz spaces L(p,q) are defined to be the collection of all f such that $||f||_{pq}^* < \infty$, where

$$(4) ||f||_{pq}^{*} = \begin{cases} \left(\int_{0}^{\infty} (t^{1/p} f^{*}(t))^{q} \frac{dt}{t} \right)^{1/q}, & 0 0} t^{1/p} f^{*}(t), & 0$$

It is not hard to show that

¹ This research, which is part of a Ph.D. thesis under the direction of Professor Guido Weiss, was supported by the U. S. Army Contract DA-31-124-ARO(D)-58.