HOLOMORPHIC CONVEXITY OF TEICHMÜLLER SPACES¹

BY LIPMAN BERS AND LEON EHRENPREIS

Communicated June 22, 1963

Let B be the complex Banach space of holomorphic functions $\phi(z) = \phi(x+iy)$ defined for y < 0, with norm $||\phi|| = \sup |y^2\phi(z)|$. The universal Teichmüller space T may be considered as a subset of B defined as follows [2], [7]. $\phi \in B$ belongs to T if and only if there is a quasiconformal selfmapping w(z) of the z-plane which leaves 0 and 1 fixed and is, for y < 0, a conformal mapping with Schwarzian derivative $\phi(z)$. If this is the case we say that w belongs to ϕ . T is a bounded domain in B containing the origin. The so-called Teichmüller metric (see below) is defined in T; it is topologically equivalent to the metric of B. Every boundary point of T has infinite Teichmüller distance from the origin.

If $Q \subset T$, we denote by h(Q) the hull of Q with respect to continuous holomorphic functions in T. $\psi \in T$ belongs to h(Q) if and only if there is no continuous holomorphic function f in T such that $|f(\psi)| > |f(\phi)|$ for all $\phi \in Q$.

THEOREM 1. If $Q \subset T$ is bounded in the Teichmüller metric, so is h(Q).

PROOF. For $\phi \in T$ let $K(\phi)$ denote the smallest dilitation of a mapping w belonging to ϕ . The function $K(\phi)$ is well defined and $\log K(\phi)$ is the Teichmüller distance of ϕ to the origin.

For $\phi \in T$ and any three real numbers a < b < c set $f_{a,b,c}(\phi) = (w(b) - w(a))/(w(c) - w(a))$ where w is any mapping belonging to ϕ . These functions are well defined and one verifies, using [3], that they are continuous and holomorphic in T.

Let $\phi \in T$ and $K(\phi) \leq \alpha$. Then there is a w belonging to ϕ with dilitation not exceeding α . Let Γ be the image of the real axis under w; this curve depends only on ϕ . Set $\chi(\zeta) = w(w^{-1}(\zeta)^*)$ where the asterisk denotes complex conjugation. Then χ is a quasireflection about Γ , that is an orientation-reversing topological selfmapping of the plane which leaves every point of Γ fixed, and the dilitation of χ is at most α^2 . By a theorem of Ahlfors [2] it follows that $|f_{a,b,c}(\phi)| \leq \beta$ for all a < b < c, where β depends only on α .

Assume now that $|f_{a,b,c}(\phi)| \le \alpha$ for all a < b < c and let Γ be the image of the real axis under a mapping w belonging to ϕ . Again by

¹ Work supported under Contract No. Nonr-285(46) with the Office of Naval Research.