HOLOMORPHIC CONVEXITY OF TEICHMÜLLER SPACES ${ }^{1}$

BY LIPMAN BERS AND LEON EHRENPREIS

Communicated June 22, 1963
Let B be the complex Banach space of holomorphic functions $\phi(z)=\phi(x+i y)$ defined for $y<0$, with norm $\|\phi\|=\sup \left|y^{2} \phi(z)\right|$. The universal Teichmüller space T may be considered as a subset of B defined as follows [2], [7]. $\phi \in B$ belongs to T if and only if there is a quasiconformal selfmapping $w(z)$ of the z-plane which leaves 0 and 1 fixed and is, for $y<0$, a conformal mapping with Schwarzian derivative $\phi(z)$. If this is the case we say that w belongs to $\phi . T$ is a bounded domain in B containing the origin. The so-called Teichmüller metric (see below) is defined in T; it is topologically equivalent to the metric of B. Every boundary point of T has infinite Teichmüller distance from the origin.

If $Q \subset T$, we denote by $h(Q)$ the hull of Q with respect to continuous holomorphic functions in $T . \psi \in T$ belongs to $h(Q)$ if and only if there is no continuous holomorphic function f in T such that $|f(\psi)|>|f(\phi)|$ for all $\phi \in Q$.

Theorem 1. If $Q \subset T$ is bounded in the Teichmiuller metric, so is $h(Q)$.

Proof. For $\phi \in T$ let $K(\phi)$ denote the smallest dilitation of a mapping w belonging to ϕ. The function $K(\phi)$ is well defined and $\log K(\phi)$ is the Teichmüller distance of ϕ to the origin.

For $\phi \in T$ and any three real numbers $a<b<c$ set $f_{a, b, c}(\phi)$ $=(w(b)-w(a)) /(w(c)-w(a))$ where w is any mapping belonging to ϕ. These functions are well defined and one verifies, using [3], that they are continuous and holomorphic in T.

Let $\phi \in T$ and $K(\phi) \leqq \alpha$. Then there is a w belonging to ϕ with dilitation not exceeding α. Let Γ be the image of the real axis under w; this curve depends only on ϕ. Set $\chi(\zeta)=w\left(w^{-1}(\zeta)^{*}\right)$ where the asterisk denotes complex conjugation. Then χ is a quasireflection about Γ, that is an orientation-reversing topological selfmapping of the plane which leaves every point of Γ fixed, and the dilitation of χ is at most α^{2}. By a theorem of Ahlfors [2] it follows that $\left|f_{a, b, c}(\phi)\right| \leqq \beta$ for all $a<b<c$, where β depends only on α.

Assume now that $\left|f_{a, b, c}(\phi)\right| \leqq \alpha$ for all $a<b<c$ and let Γ be the image of the real axis under a mapping w belonging to ϕ. Again by

[^0]
[^0]: ${ }^{1}$ Work supported under Contract No. Nonr-285(46) with the Office of Naval Research.

