JORDAN ALGEBRAS OF DEGREE 1

BY K. McCRIMMON

Communicated by N. Jacobson, April 20, 1964

For finite-dimensional special Jordan algebras, A. A. Albert proved [1] the following

THEOREM. Let A be a Jordan algebra over a field Φ of characteristic $\neq 2$. If A has an identity element 1 such that every $a \in A$ is of the form $a = \lambda 1 + z$ for $\lambda \in \Phi$, z nilpotent, then $A = \Phi 1 + Z$ where Z is a nil subalgebra.

The concepts of inverses and ternary compositions in Jordan algebras were first introduced by N. Jacobson to adapt Albert's argument to the general finite-dimensional case. The following proof shows that the theory of inverses as developed in [2], [3] and subsequently can be used to yield the result directly without any dimensionality restrictions.

PROOF. Let $Z = \{z \mid z \text{ nilpotent}\}$; note that $\lambda 1 + z$ is regular if $\lambda \neq 0$ since it has an inverse in $\Phi[z]$, so $Z = \{z \mid z \text{ singular}\} = \{z \mid U_z \text{ singular}\}$, and hence the fundamental formula $U_{U(x)z} = U_x U_z U_x$ shows $U_x z \in Z$ for all $x \in A$, $z \in Z$. We must show Z is a subalgebra; by commutativity it suffices to show a, $b \in Z \Rightarrow \lambda a$, a^2 , $a + b \in Z$. Clearly $\lambda a \in Z$, and $a^2 \in Z$ since A is power-associative. Suppose $a + b \notin Z$; multiplying by a scalar we may assume a + b = 1 - 4z for $z \in Z$. But 1 - 4z has a regular square root: if $\lambda_1 = 1$, $\lambda_k = \sum_{1 \leq i \leq k-1} \lambda_i \lambda_{k-i}$ then the λ_k are integers, $w = \sum_{k \geq 1} \lambda_k z^k$ is a well-defined nilpotent element of A, $w - w^2 = z$, so c = 1 - 2w is regular and $c^2 = 1 - 4w + 4w^2 = 1 - 4z$. Thus $a + b = c^2 = U_c 1$, so $a' + b' = U_{c-1}a + U_{c-1}b = U_{c-1}U_c 1 = 1$ for a', $b' \in Z$, which is a contradiction since b' = 1 - a' is regular if a' is nilpotent. Hence we must have $a + b \in Z$.

References

- 1. A. A. Albert, A theory of power associative commutative algebras, Trans. Amer. Math. Soc. 69 (1950), 503-527.
- 2. N. Jacobson, A theorem on the structure of Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 42 (1956), 140-147.
- 3. ——, A coordinatization theorem for Jordan algebras, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 1154-1160.

YALE UNIVERSITY