ON A STATIONARY APPROACH TO SCATTERING PROBLEM ${ }^{1}$

BY S. T. KURODA
Communicated by P. Lax, April 1, 1964

1. Let $H_{p}, p=1,2$, be self-adjoint operators in a Hilbert space \mathfrak{G} satisfying the condition

$$
\begin{equation*}
\left(H_{1}-z\right)^{-1}-\left(H_{0}-z\right)^{-1} \in T(\mathfrak{S}), \quad z \in \rho\left(H_{0}\right) \cap \rho\left(H_{1}\right) \tag{1}
\end{equation*}
$$

Here, $\boldsymbol{T}(\mathfrak{S})$ denotes the trace class of completely continuous operators in \mathfrak{S} and $\rho\left(H_{p}\right)$ the resolvent set of H_{p}. The perturbation theory of absolutely continuous (abbr. a.c.) parts of H_{p} as well as the theory of wave and scattering operators has recently been studied independently by de Branges [2], Birman and Kreĭn [1], and Kato [3]. In [1] and [3] the problem was considered from the viewpoint of the scattering theory. In particular, the wave operators $W_{ \pm}$were proved to exist and hence to be partially isometric operators which give the unitary equivalence of a.c. parts of H_{0} and H_{1}. In [2], on the contrary, similar partially isometric operators $\hat{W}_{ \pm}$were constructed somewhat explicitly and without referring to the limit of wave operator type. The purpose of the present note is to study the latter approach from a viewpoint of the scattering theory and to see that the so-called time-independent or stationary approach to the theory of wave and scattering operators can be made possible under the condition (1). In a simpler case, a similar study was made in [4]. Our construction of the operator similar to $\hat{W}_{ \pm}$, i.e. the operator given by the right side of (9), is similar to but slightly different from that given in [2]. In particular, the use of the auxiliary operator I in [2] is avoided. Furthermore, the construction of the operators π_{0} and π_{1} in 3 might be a little more explicit than that of the corresponding operators given in [2].
2. Let © be a separable Hilbert space and let $T_{p} \equiv T_{p}(\mathbb{C}) \subset T(\mathbb{C})$ be the set of all non-negative operators in $T(\mathbb{C})$. The trace norm will generally be denoted by $\tau()$. Let μ be a T_{p}-valued measure defined for bounded Borel sets of the reals R^{1}. Then the set function ρ, first defined at each bounded Borel set e as $\rho(e)=\tau(\mu(e))$ and then ex-

[^0]
[^0]: ${ }^{1}$ The work was partly supported by the National Science Foundation through Purdue University (NSF G-18920). The author wishes to express his thanks to Professor Louis de Branges for valuable discussions and kind hospitality extended to the author while he was visiting Purdue University.

