ON A STATIONARY APPROACH TO SCATTERING PROBLEM¹

BY S. T. KURODA

Communicated by P. Lax, April 1, 1964

1. Let H_p , p=1, 2, be self-adjoint operators in a Hilbert space \mathfrak{H} satisfying the condition

$$(1) \quad (H_1 - z)^{-1} - (H_0 - z)^{-1} \in T(\mathfrak{H}), \qquad z \in \rho(H_0) \cap \rho(H_1).$$

Here, $T(\mathfrak{H})$ denotes the trace class of completely continuous operators in \mathfrak{H} and $\rho(H_p)$ the resolvent set of H_p . The perturbation theory of absolutely continuous (abbr. a.c.) parts of H_p as well as the theory of wave and scattering operators has recently been studied independently by de Branges [2], Birman and Krein [1], and Kato [3]. In [1] and [3] the problem was considered from the viewpoint of the scattering theory. In particular, the wave operators W_{\pm} were proved to exist and hence to be partially isometric operators which give the unitary equivalence of a.c. parts of H_0 and H_1 . In [2], on the contrary, similar partially isometric operators \hat{W}_{\pm} were constructed somewhat explicitly and without referring to the limit of wave operator type. The purpose of the present note is to study the latter approach from a viewpoint of the scattering theory and to see that the so-called time-independent or stationary approach to the theory of wave and scattering operators can be made possible under the condition (1). In a simpler case, a similar study was made in [4]. Our construction of the operator similar to \hat{W}_{\pm} , i.e. the operator given by the right side of (9), is similar to but slightly different from that given in [2]. In particular, the use of the auxiliary operator I in [2]is avoided. Furthermore, the construction of the operators π_0 and π_1 in 3 might be a little more explicit than that of the corresponding operators given in [2].

2. Let \mathfrak{C} be a separable Hilbert space and let $T_p \equiv T_p(\mathfrak{C}) \subset T(\mathfrak{C})$ be the set of all non-negative operators in $T(\mathfrak{C})$. The trace norm will generally be denoted by $\tau(\)$. Let μ be a T_p -valued measure defined for bounded Borel sets of the reals \mathbb{R}^1 . Then the set function ρ , first defined at each bounded Borel set e as $\rho(e) = \tau(\mu(e))$ and then ex-

¹ The work was partly supported by the National Science Foundation through Purdue University (NSF G-18920). The author wishes to express his thanks to Professor Louis de Branges for valuable discussions and kind hospitality extended to the author while he was visiting Purdue University.