connecting the fixed points of T. (4) If O_1 and O_2 are disjoint simply connected domains invariant under a loxodromic T, the corresponding arcs, as in (3), divide S into two Jordan regions, one or the other of which must contain any domain disjoint from O_1 and O_2 . (5) If O is a simply connected domain invariant under an elliptic T, then O must contain a fixed point of T.

The examples are elaborations of the ideas in L. R. Ford, Automorphic functions, 2nd ed., Chelsea, 1951, pp. 55-59.

BROWN UNIVERSITY

DIFFERENTIABLE NORMS IN BANACH SPACES¹

BY GUILLERMO RESTREPO

Communicated by W. Rudin, January 20, 1964

1. Introduction. In [4, p. 28] S. Lang has asked whether or not a separable Banach space has an admissible norm of class C^1 . In this note we indicate a proof of the following theorem, which characterizes those Banach spaces for which such a norm exists.

THEOREM 1. A separable Banach space has an admissible norm of class C^1 if and only if its dual is separable.

It follows from this theorem that not even C(I) possesses an admissible differentiable norm.

2. Preliminaries. Let X be a Banach space with norm α ; we write $S_{\alpha} = \{x \mid \alpha(x) = 1\}$ and $B_{\alpha} = \{x \mid \alpha(x) \leq 1\}$. A norm in X is admissible if it induces the same topology as does α . The dual space is written X^* and the norm dual to α is denoted by α^* . An $f \in X^*$ is called a support functional to B_{α} at $x \in S_{\alpha}$ if $\alpha^*(f) = f \cdot x$; if f has norm 1, it is called a normalized support functional and is written ν_x . A norm is smooth if there is a unique normalized support functional to B_{α} at $each x \in S_{\alpha}$. The norm α is differentiable at $x \neq 0$ if there is an $\alpha'(x) \in X^*$ such that

$$\lim_{x \in y \neq x} \frac{\left| \alpha(y) - \alpha(x) - \alpha'(x) \cdot (y - x) \right|}{\alpha(y - x)} = 0$$

¹ Research partially supported by NSF Grant G-24471.

1/-