INVARIANT DOMAINS FOR KLEINIAN GROUPS¹

BY R. ACCOLA

Communicated by Lipman Bers, December 2, 1963

If the limit set, Σ , of a properly discontinuous group, Γ , of fractional linear transformations of the Riemann sphere, S, contains more than two points, call Γ Kleinian. Otherwise, call Γ elementary. Let $\{\Omega_i\}$ be an enumeration of the components of Ω , the set of discontinuity. If O is a domain in S, i.e., O is open and connected, let $\Gamma(O)$ be the subgroup of Γ of elements which map O onto itself. If $\Gamma(O) = \Gamma$, call O an *invariant domain*. If $\Gamma(\Omega_i) = \{id\}$, call Ω_i an *atom*

THEOREM 1. If Γ possesses three disjoint invariant domains then Γ is cyclic.

THEOREM 2. Suppose Γ possesses an invariant component Ω_0 . If $0 \neq i \neq j \neq 0$, then $\Gamma(\Omega_i) \cap \Gamma(\Omega_j)$ is a nonloxodromic and nonhyperbolic cyclic group. If Ω_0 is simply connected this latter group is nonelliptic.

THEOREM 3. If Γ is a Kleinian group with two disjoint invariant domains, then there exists a maximal pair of disjoint invariant domains² each of which is simply connected. All noninvariant components of Ω are atoms.

The author is grateful to Leon Greenberg for pointing out how the next theorem follows from the methods used in proving the previous theorems and, essentially, from a deep theorem of Nielsen and Fenchel on Fuchsian groups.

THEOREM 4. If O_1 and O_2 are a maximal pair of disjoint invariant domains for a Kleinian group, Γ , then O_1/Γ and O_2/Γ are homeomorphic surfaces.

Examples are given where (a) Ω and Σ are both connected and (b) where Γ possesses two invariant components *and* atoms.

The proofs follow from remarks of which the following are typical. (1) A closed set, invariant under Γ , contains Σ . (2) The components of the complement of a closed connected set are simply connected. (3) If O is a simply connected domain invariant under a loxodromic transformation, T, then there is a Jordan arc in O invariant under T

¹ Research supported by the Office of Naval Research.

² Added in proof. O_1 and O_2 are a maximal pair of disjoint invariant domains if whenever O'_1 and O'_2 are a pair of disjoint invariant domains such that $O_i \subset O'_i$, then $D_i = O'_i$ for i = 1, 2.