SOME CURIOUS INVOLUTIONS OF SPHERES

BY MORRIS W. HIRSCH AND JOHN MILNOR
Communicated by Deane Montgomery, December 31, 1963

Consider an involution T of the sphere S^{n} without fixed points. Is the quotient manifold S^{n} / T necessarily isomorphic to projective n space? This question makes sense in three different categories. One can work either with topological manifolds and maps. with piecewise linear manifolds and maps, or with differentiable manifolds and maps.

For $n \leqq 3$ the statement is known to be true (Livesay [6]). In these cases it does not matter which category one works with. On the other hand, for $n=7$, in the differentiable case, the statement is known to be false (Milnor [10]).

This note will show that, in the piecewise linear case, the statement is false for all $n \geqq 5$. Furthermore, for $n=5,6$, we will construct a differentiable involution $T: S^{n} \rightarrow S^{n}$ so that the quotient manifold is not even piecewise linearly homeomorphic to projective space. Our proofs depend on a recent theorem of J. Cerf.

Let us start with the exotic 7 -sphere M_{3}^{7} as described by Milnor [7]. This differentiable manifold M_{3}^{7} is defined as the total space of a certain 3 -sphere bundle over the 4 -sphere. It is known to be homeomorphic, but not diffeomorphic, to the standard 7 -sphere.

Taking the antipodal map on each fibre we obtain a differentiable involution $T: M_{3}^{7} \rightarrow M_{3}^{7}$ without fixed points. (The quotient manifold M_{3}^{7} / T can be considered as the total space of a corresponding projective 3 -space bundle over S^{4}.) The following lemma was pointed out to us, in part, by P. Conner and D. Montgomery.

Lemma 1. There exists a differentiably imbedded 6-sphere, $S_{0}^{6} \subset M_{3}^{7}$, which is invariant under the action of T, and a differentiably imbedded $S_{0}^{5} \subset S_{0}^{6}$ which is also invariant.

Thus in this way one constructs a differentiable involution of the standard sphere in dimensions $5,6$.

The proof will depend on the explicit description of M_{3}^{7} (or more generally of M_{k}^{7}) which was given in [7]. Take two copies of $R^{4} \times S^{3}$ and identify the subsets $\left(R^{4}-(0)\right) \times S^{3}$ under the diffeomorphism

$$
(u, v) \rightarrow\left(u^{\prime}, v^{\prime}\right)=\left(u /\|u\|^{2}, u^{h} v u^{j} /\|u\|\right)
$$

using quaternion multiplication, where $h+j=1, h-j=k$. The involution T changes the sign of v and v^{\prime}. Let S_{0}^{6} be the set of all points of M_{k}^{7} such that $\Re\left(v^{\prime}\right)=\Re(u v)=0$, where $\mathfrak{R}(u v)=\Re(v u)$ denotes the real

