ERGODIC PROPERTIES OF ISOMETRIES IN L^p SPACES, 1

BY A. IONESCU TULCEA¹

Communicated by P. R. Halmos, November 7, 1963

Let X = [0, 1], & the σ -algebra of Lebesgue measurable sets of Xand μ the Lebesgue measure. For $1 \leq p < \infty$ denote with \mathfrak{L}^p the vector space of all real-valued &-measurable functions f on X for which $|f|^p$ is integrable and with $f \rightarrow ||f||_p = (\int |f|^p d\mu)^{1/p}$ the corresponding seminorm on \mathfrak{L}^p . Denote with \mathfrak{L}^∞ the vector space of all real-valued &-measurable functions on X which are essentially bounded and with $f \rightarrow ||f||_{\infty}$ the essential supremum seminorm on \mathfrak{L}^∞ . For each $1 \leq q \leq \infty$ denote with L^q the associated Banach space and with $f \rightarrow \tilde{f}$ the canonical mapping of \mathfrak{L}^q onto L^q . If $T: L^q \rightarrow L^q$ is a continuous linear operator and $\tilde{f} \in L^q$, we shall denote by Tf a representative of the class $T\tilde{f}$. We shall say that the individual ergodic theorem holds for T if for every $f \in \mathfrak{L}^q$

$$\lim_{m\to\infty}\frac{f(x)+Tf(x)+\cdots+T^{m-1}f(x)}{m}$$

exists almost everywhere. We shall say that the dominated ergodic theorem holds for T if there is a constant C>0 such that for every $f \in \mathfrak{L}^q$

$$\sup_{1\leq m<\infty}\frac{|f+Tf+\cdots+T^{m-1}f|}{m}\in\mathfrak{L}^q$$

and

$$\left\|\sup_{1\leq m<\infty}\frac{\left|f+Tf+\cdots+T^{m-1}f\right|}{m}\right\|_{q}\leq C\|f\|_{q}.$$

Let us recall that an *automorphism* is a bijective mapping $\tau: X \to X$ satisfying the following two conditions: (i) for every $E \in \mathfrak{G}, \tau^{-1}(E) \in \mathfrak{G}$ and $\tau(E) \in \mathfrak{G}$; (ii) if $A \in \mathfrak{G}$ and $\mu(A) = 0$, then $\mu(\tau^{-1}(A)) = \mu(\tau(A)) = 0$. Let \mathfrak{G} be the group of all automorphisms, e the unit element of \mathfrak{G} (i.e. the identity mapping of X). For $\tau_1 \in \mathfrak{G}, \tau_2 \in \mathfrak{G}$, write $\tau_1 \equiv \tau_2$ if $\mu(\{x \mid \tau_1(x) \neq \tau_2(x)\}) = 0$; this defines an equivalence relation R in \mathfrak{G} . Denote with $\tau \to \tilde{\tau}$ the canonical mapping of the group \mathfrak{G} onto the quotient group \mathfrak{G}/R .

 $^{^1}$ Research supported by the U. S. Army Research Office (Durham) under contract DA-ARO(D)-31-124-G 218.