ON THE NUMBER OF CLOSED GEODESICS ON A RIEMANNIAN MANIFOLD

BY WILHELM KLINGENBERG

Communicated by S. S. Chern, November 19, 1963
To Kurt Reidemeister on his 70th birthday

1. Let M be a compact riemannian manifold. It is a classical problem to find a lower bound for the number of closed geodesics on M, i.e., of curves which can be parametrized as a geodesic segment which has the same point as initial and as end point and has no corner there.

The only result known to hold for arbitrary manifolds M is that there is at least one closed geodesic on M, cf. Fet [5], Svarc [14], Olivier [11]. To get a more precise result it will presumably always be necessary to make assumptions on the topological structure of M. So it is known, e.g., that a nontrivial element of the fundamental group of M does determine a closed geodesic which represents this element. The case which has been studied most thoroughly so far is that M is diffeomorphic to the usual m-sphere S^{m}. After preliminary results of Poincaré [12], Birkhoff [2], Lusternik-Schnirelmann [7], Morse [9;10] and Lyusternik [8], a rather complete answer was obtained by Al^{\prime} ber [1]. He assumes (as also Morse does in his work) that the diffeomorphism $\phi: M \rightarrow S^{m}$ satisfies the following condition: There is a $c>0$ such that

$$
\begin{equation*}
c\|d \phi X\| \leqq\|X\|<2 c\|d \phi X\| \tag{*}
\end{equation*}
$$

for any tangent vector X to M. Here, $\|Y\|$ denotes the length of the vector Y. Obviously, this condition may be interpreted as saying that the diffeomorphism ϕ shall not differ too much from the similarity with the factor c. Now, Al^{\prime} ber's result reads as follows:

Let M be a compact riemannian manifold for which there exists a diffeomorphism $\phi: M \rightarrow S^{m}$ satisfying (*). Put $m=2^{k}+s$ with $0 \leqq s<2^{k}$. Then there exist at least $2 m-s-1$ closed geodesics on M of which none is a covering of another one. All have their length in the interval $[2 \pi c, 4 \pi c[$.

The algebraic number of closed geodesics is at least $(m+1) m / 2$.
The last statement is due to Morse [9;10]. The algebraic number of closed geodesics is obtained when counting each geodesic with a certain multiplicity. For this we refer to Al^{\prime} ber [1].
2. In the present paper, we announce the corresponding result for a manifold which is diffeomorphic to an arbitrary compact symmetric

