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1. Results. An inversive plane is an incidence structure of points 
and circles satisfying the following axioms: 

I. Three distinct points are connected by exactly one circle. 
II. If P, Q are two points and c a circle through P but not Q, then 

there is exactly one circle c' through P and Q such that cC\c'~ [P]. 
III. There are at least two circles. Every circle has at least three 

points. 
For any point P of the inversive plane 3 , the points 5̂  P and the 

circles through P form an affine plane 31 (P). If 3 is finite, all these 
affine planes have the same order (number of points per line); this 
integer is also termed the order of 3 . An inversive plane of order n 
consists of n2 + l points and n(n2 + l) circles; every circle contains 
n + 1 points, and any two points are connected by n + 1 circles. 

Let ^ be a projective space of dimension d>\ (we shall only be 
concerned with d = 2, 3, and we do not assume the theorem of Des-
argues if d = 2). A point set ® in $ is called an ovoid if 

I'. Any straight line of ty meets S in at most two points; 
IV. For any P£(5, the union of all lines x with xP\Ë= {P} is a 

hyperplane. 
(This is called the tangent hyperplane to S in P.) It is straight­

forward to prove that the points and the nontrivial plane sections of 
an ovoid in a three-dimensional projective space form an inversive 
plane. The purpose of the present note is the announcement, and an 
outline of proof, of the following partial converse: 

THEOREM 1. Every inversive plane of even order n is isomorphic to the 
system of points and plane sections of an ovoid in a three-dimensional 
projective space over GF(w). 

We list three immediate corollaries: If 3 is an inversive plane of 
even order n, then (i) n is a power of 2, (ii) for any PÇzS, the affine 
plane Sl(P) is desarguesian, and (iii) 3? satisfies the bundle theorem 
("Büschelsatz," cf., e.g., [2]). 

The proof of Theorem 1, to be outlined in §2 below, shows also that 
every automorphism (incidence preserving permutation) of an inver­
sive plane of even order can be extended to a coUineation, leaving the 
representing ovoid invariant, of the appropriate projective space. To­
gether with recent results of Tits [9], [lO], this leads to a complete 
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