INVERSIVE PLANES OF EVEN ORDER

BY PETER DEMBOWSKI

Communicated by A. M. Gleason, June 10, 1962

1. Results. An inversive plane is an incidence structure of points and circles satisfying the following axioms:
I. Three distinct points are connected by exactly one circle.
II. If P, Q are two points and c a circle through P but not Q, then there is exactly one circle c^{\prime} through P and Q such that $c \cap c^{\prime}=\{P\}$.
III. There are at least two circles. Every circle has at least three points.

For any point P of the inversive plane \mathfrak{J}, the points $\neq P$ and the circles through P form an affine plane $\mathfrak{H}(P)$. If \mathfrak{F} is finite, all these affine planes have the same order (number of points per line); this integer is also termed the order of \Im. An inversive plane of order n consists of $n^{2}+1$ points and $n\left(n^{2}+1\right)$ circles; every circle contains $n+1$ points, and any two points are connected by $n+1$ circles.

Let \mathfrak{P} be a projective space of dimension $d>1$ (we shall only be concerned with $d=2,3$, and we do not assume the theorem of Desargues if $d=2$). A point set \mathbb{C} in \mathfrak{B} is called an ovoid if
I^{\prime}. Any straight line of \mathfrak{P} meets \mathfrak{C} in at most two points;
II'. For any $P \in \mathbb{C}$, the union of all lines x with $x \cap \mathfrak{C}=\{P\}$ is a hyperplane.
(This is called the tangent hyperplane to \mathbb{C} in P.) It is straightforward to prove that the points and the nontrivial plane sections of an ovoid in a three-dimensional projective space form an inversive plane. The purpose of the present note is the announcement, and an outline of proof, of the following partial converse:

Theorem 1. Every inversive plane of even order n is isomorphic to the system of points and plane sections of an ovoid in a three-dimensional projective space over $\operatorname{GF}(n)$.

We list three immediate corollaries: If \mathfrak{J} is an inversive plane of even order n, then (i) n is a power of 2 , (ii) for any $P \in \Im$, the affine plane $\mathfrak{H}(P)$ is desarguesian, and (iii) \mathfrak{F} satisfies the bundle theorem ("Büschelsatz," cf., e.g., [2]).

The proof of Theorem 1, to be outlined in §2 below, shows also that every automorphism (incidence preserving permutation) of an inversive plane of even order can be extended to a collineation, leaving the representing ovoid invariant, of the appropriate projective space. Together with recent results of Tits [9], [10], this leads to a complete

