References

1. S. Bochner and A. E. Taylor, *Linear functionals on certain spaces of abstractly*valued functions, Ann. of Math. (2) 39 (1938), 913–944.

2. Avner Friedman, Convergence of solutions of parabolic equations to a steady state, J. Math. Mech. 8 (1959), 57-76.

3. O. A. Ladyženskaja and N. N. Ural'ceva, A boundary-value problem for linear and quasi-linear parabolic equations. I, Izv. Akad. Nauk SSSR Ser. Mat. 26 (1962), 5-52. (Russian)

4. W. Littman, G. Stampacchia and H. F. Weinberger, *Regular points for elliptic equations with discontinuous coefficients*, University of Minnesota Report, Minneapolis, Minn., December 1962.

5. J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954.

6. W. Pogorzelski, Étude d'une fonction de Green et du problème aux limites pour l'équation parabolique normale, Ann. Polon. Math. 4 (1958), 288-307.

7. G. Stampacchia, Régularisation des solutions de problèmes aux limites elliptiques à données discontinues, Internat. Sympos. on Linear Spaces, Pergamon, Jerusalem, 1960.

UNIVERSITY OF MINNESOTA

ON APPROXIMATE SOLUTIONS TO THE CONVOLUTION EQUATION ON THE HALF-LINE

BY T. K. BOEHME

Communicated by R. C. Buck, July 24, 1963

1. We will call a complex-valued function on the half-line t>0 locally integrable if it is integrable on each interval [0, T], T>0. Let \mathcal{L} be the ring of locally integrable functions (functions which are equal up to a set of measure zero will be identified with each other) with the usual pointwise addition, and with convolution for the product operation. Thus kx = r if and only if $\int_0^t k(t-u)x(u)du = r(t)$ for almost every t>0. Give \mathcal{L} the topology defined by the seminorms $||x||_T = \int_0^T |x|(u)du, T>0$. Thus a sequence $x_n, n=1, 2, \cdots$ in \mathcal{L} converges to 0 in \mathcal{L} if and only if $x_n \rightarrow 0$ in L[0, T] for each T>0 as $n \rightarrow \infty$. The equation kx = r is an important integral equation; however, solutions and the existence of solutions are in general difficult to obtain. M. I. Fenyö and C. Foias $[1]^1$ have shown that if k and r are in \mathcal{L} and if k vanishes on no neighborhood of the origin (i.e. $||k||_T > 0$ for each T>0) there is always an approximate solution to the equation

1963]

¹ The author thanks the referee for calling this article to his attention.