LOCALLY FLAT, LOCALLY TAME, AND TAME EMBEDDINGS

BY CHARLES GREATHOUSE

Communicated by Deane Montgomery, May 23, 1963

1. Introduction. Brown [1] has shown that an S^{n-1} embedded in a locally flat manner in S^n is flat and hence tame in S^n . Bing [2] and Moise [3] have shown that locally tame subsets of 3-manifolds are tame. However, in the general case, it is not known whether a manifold N embedded in a locally flat manner in a triangulated manifold M or a polyhedron P embedded in a locally tame manner in a triangulated manifold M are tame in M. Partial solutions to both of these problems have been obtained by the author and will be stated in §3 of this paper. I have been informed by R. H. Bing that Herman Gluck has obtained similar results.

2. Definitions and notations. Let N^k be a combinatorial k-manifold. Then $(N^k)^r$ will denote the *r*th barycentric subdivision of N^k . If α is a k-simplex of $(N^k)^r$ and α'' is the union of all simplexes of $(N^k)^{r+2}$ contained in α , then C_{α} will denote the closed simplicial neighborhood of $|\alpha''|$, the polyhedron of α'' , in $(N^k)^{r+2}$. That is C_{α} is the union of all closed simplexes in $(N^k)^{r+2}$ that meet $|\alpha''|$. Since α'' is collapsible, C_{α} is a combinatorial k-ball [4].

The statement that f is a locally flat embedding of a k-manifold N^k in an n-manifold N^n , means that each point of $f(N^k)$ has a neighborhood U in N^n such that the pair $(U, U \cap f(N^k))$ is homeomorphic to the pair (R^n, R^k) .

Two definitions of locally tame will now be given.

DEFINITION 1. Let N be a manifold topologically embedded in a triangulated manifold M. N is locally tame if for each point p of N, there exists a neighborhood U of p in M and a homeomorphism h of \overline{U} into M, such that $h[\operatorname{Cl}(U \cap N)]$ is a polyhedron in M.

DEFINITION 2. Let P be a polyhedron topologically embedded in a triangulated manifold M. P is locally tame if for each point p of P, there exists a neighborhood U of p in M and a homeomorphism h of \overline{U} into M, such that $h | \operatorname{Cl}(U \cap P)$ is piecewise linear with respect to a fixed triangulation T of P.

Let K be a complex topologically embedded by f in a triangulated n-manifold N^n and let $\epsilon > 0$. Suppose there exists an ϵ -homeomorphism h of N^n onto itself such that if $U_{\epsilon}(f(K))$ denotes the set of points in N^n whose distance from f(K) is less than ϵ , then