LOCALLY FLAT, LOCALLY TAME, AND TAME EMBEDDINGS

BY CHARLES GREATHOUSE
Communicated by Deane Montgomery, May 23, 1963

1. Introduction. Brown [1] has shown that an S^{n-1} embedded in a locally flat manner in S^{n} is flat and hence tame in S^{n}. Bing [2] and Moise [3] have shown that locally tame subsets of 3 -manifolds are tame. However, in the general case, it is not known whether a manifold N embedded in a locally flat manner in a triangulated manifold M or a polyhedron P embedded in a locally tame manner in a triangulated manifold M are tame in M. Partial solutions to both of these problems have been obtained by the author and will be stated in §3 of this paper. I have been informed by R. H. Bing that Herman Gluck has obtained similar results.
2. Definitions and notations. Let N^{k} be a combinatorial k-manifold. Then $\left(N^{k}\right)^{r}$ will denote the r th barycentric subdivision of N^{k}. If α is a k-simplex of $\left(N^{k}\right)^{r}$ and $\alpha^{\prime \prime}$ is the union of all simplexes of $\left(N^{k}\right)^{r+2}$ contained in α, then C_{α} will denote the closed simplicial neighborhood of $\left|\alpha^{\prime \prime}\right|$, the polyhedron of $\alpha^{\prime \prime}$, in $\left(N^{k}\right)^{r+2}$. That is C_{α} is the union of all closed simplexes in $\left(N^{k}\right)^{r+2}$ that meet $\left|\alpha^{\prime \prime}\right|$. Since $\alpha^{\prime \prime}$ is collapsible, C_{α} is a combinatorial k-ball [4].

The statement that f is a locally flat embedding of a k-manifold N^{k} in an n-manifold N^{n}, means that each point of $f\left(N^{k}\right)$ has a neighborhood U in N^{n} such that the pair $\left(U, U \cap f\left(N^{k}\right)\right)$ is homeomorphic to the pair (R^{n}, R^{k}).

Two definitions of locally tame will now be given.
Definition 1. Let N be a manifold topologically embedded in a triangulated manifold $M . N$ is locally tame if for each point p of N, there exists a neighborhood U of p in M and a homeomorphism h of \bar{U} into M, such that $h[\mathrm{Cl}(U \cap N)]$ is a polyhedron in M.

Definition 2. Let P be a polyhedron topologically embedded in a triangulated manifold $M . P$ is locally tame if for each point p of P, there exists a neighborhood U of p in M and a homeomorphism h of \bar{U} into M, such that $h \mid \mathrm{Cl}(U \cap P)$ is piecewise linear with respect to a fixed triangulation T of P.

Let K be a complex topologically embedded by f in a triangulated n-manifold N^{n} and let $\epsilon>0$. Suppose there exists an ϵ-homeomorphism h of N^{n} onto itself such that if $U_{\epsilon}(f(K))$ denotes the set of points in N^{n} whose distance from $f(K)$ is less than ϵ, then

