ON THE STRUCTURE OF SEMI-NORMAL OPERATORS¹

BY C. R. PUTNAM

Communicated by P. R. Halmos, July 7, 1963

1. Preliminaries. Only bounded operators on a Hilbert space \mathfrak{H} of elements x will be considered. If A is self-adjoint with the spectral resolution

(1) $A = \int \lambda dE(\lambda)$,

and if $\mathfrak{F}_a = \mathfrak{F}_a(A)$ denotes the set of elements x for which $||E(\lambda)x||^2$ is an absolutely continuous function of λ , then \mathfrak{F}_a is a subspace; cf. [2, p. 240], [3, p. 436] and [6, p. 104]. If $\mathfrak{F} = \mathfrak{F}_a$, then A is called absolutely continuous. The one-dimensional Lebesgue measure of the spectrum of a self-adjoint operator A will be denoted by meas $\mathrm{sp}(A)$.

An operator T on \mathfrak{H} is called semi-normal if

(2) $TT^* - T^*T \equiv D \ge 0$ or $D \le 0$.

There will be proved the following result concerning such an operator.

2. Theorem. If T satisfies (2) and if $\mathfrak{M} = \mathfrak{M}_T$ is the smallest subspace of \mathfrak{H} reducing T and containing the range of D, then

(3) $T+T^*$ is absolutely continuous on \mathfrak{M} ,

and, if \mathfrak{M}^{\perp} denotes the orthogonal complement of \mathfrak{M} (so that \mathfrak{M}^{\perp} also reduces T), then

(4) T is normal on \mathfrak{M}^{\perp} .

In addition,

(5) $2\pi ||D|| \leq ||T - T^*||$ meas sp $(T + T^*)$,

and the inequality (5) is optimal in the sense that there exist examples with $D \neq 0$ for which (5) becomes an equality.

As a consequence, if T is semi-normal but not normal, then $\mathfrak{F}_a(T+T^*)\neq 0$, a result which can also be concluded from [4, Corollary 3, p. 1029], where the symbol "<" should be replaced by " \neq ." (This same Corollary, incidentally, also implies the result proved by Andô [1] that a completely continuous semi-normal operator T must be normal. In fact, if T is completely continuous, so also are T^* and $T+T^*$. But the spectrum of $T+T^*$ clearly must be of measure zero.)

If θ is real and $T(\theta) = e^{i\theta}T$, then (2) is unchanged if T is replaced by $T(\theta)$. Also, it is clear that the set $\mathfrak{M}_{T(\theta)}$ is independent of θ . It follows that (3), (4) and (5) remain valid if, in each instance, T is

¹ This work was supported by the National Science Foundation research grant NSF-G18915.