FREDHOLM EIGENVALUES AND QUASICONFORMAL MAPPING¹

BY GEORGE SPRINGER

Communicated by Edwin Moise, August 1, 1963

Let \overline{D} be a region of connectivity n in the z-plane which contains the point at infinity. Suppose that its boundary consists of n Jordan curves C_1, C_2, \cdots, C_n , each of which is given parametrically in terms of its arc length by functions having continuous second derivatives which satisfy a Hölder condition of order α ($0 < \alpha \leq 1$). Each C_j ($j=1, \cdots, n$) forms the boundary of a simply connected bounded region D_j , and we shall write $D=D_1\cup\cdots\cup D_n$ and $C=C_1\cup\cdots$ $\cup C_n$.

Let λ denote the smallest eigenvalue satisfying $\lambda\!>\!1$ of the integral equation

$$f(z) = \frac{\lambda}{\pi} \int_C f(t) \frac{\partial}{\partial n_t} \log \frac{1}{|z-t|} \, ds_t, \qquad t \in C,$$

where s_t denotes the arc length parameter on C oriented positively with respect to \tilde{D} and $\partial/\partial n_t$ denotes differentiation in the direction of the normal to C pointing into \tilde{D} . We shall refer to λ as the Fredholm eigenvalue of C.

We next suppose that $\zeta(z)$ is a quasiconformal homeomorphism of the z-sphere onto the ζ -sphere ($\infty \rightarrow \infty$) whose generalized derivatives are denoted by

$$p = \frac{\partial \zeta}{\partial z} = \frac{1}{2} \left(\frac{\partial \zeta}{\partial x} - i \frac{\partial \zeta}{\partial y} \right)$$
 and $q = \frac{\partial \zeta}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial \zeta}{\partial x} + i \frac{\partial \zeta}{\partial y} \right).$

We assume that $\zeta(z)$ is K-quasiconformal in D and M-quasiconformal in \tilde{D} ; i.e., $||q||_{\infty} \leq k ||p||_{\infty} (k < 1)$ in D and $||q||_{\infty} \leq m ||p||_{\infty} (m < 1)$ in \tilde{D} , where K = (1+k)/(1-k) and M = (1+m)/(1-m). The image of each C_j is a curve C_j^* and the curve system $C = C_1^* \cup \cdots \cup C_n^*$ has Fredholm eigenvalue λ^* . The following inequality holds:

THEOREM.

(1)
$$\frac{\lambda^* + 1}{\lambda^* - 1} \le KM \frac{\lambda + 1}{\lambda - 1}$$

If λ is known and the K and M for the mapping ζ are known, then

¹ This research was supported by the National Science Foundation under grant GP-209.