UPPER BOUNDS FOR PERMANENTS OF (0,1)-MATRICES

BY HENRYK MINC ${ }^{1}$
Communicated by A. S. Householder, July 15, 1963

1. Introduction. A matrix is said to be a (0,1)-matrix if each of its entries is either 0 or 1 . If $A=\left(a_{i j}\right)$ is an n-square matrix then the permanent of A is defined by

$$
p(A)=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where the summation extends over all permutations σ of the symmetric group S_{n}. Bounds for permanents of general (0,1)-matrices and for permanents of certain subclasses of $(0,1)$-matrices are of combinatorial significance and yet virtually the only known upper bound for $p(A)$ is the obvious one, the product of row sums of A. It has been conjectured that the permanent of an n-square (0,1)-matrix with exactly k ones, $k<n$, in each row and column must exceed $n!(k / n)^{n}$ [1, p. 59]. It has been also conjectured by H. J. Ryser that in the class of all $m k$-square (0,1)-matrices with exactly k ones in each row and column the maximum permanent is equal to $(k!)^{m}$, i.e., to the permanent of the direct sum of k-square matrices all of whose entries are 1 . In the present note I give a significant upper bound for the permanent of a general (0,1)-matrix. I also conjecture an upper bound which would allow one to answer Ryser's conjecture in the affirmative.

2. Results.

Lemma. If r_{1}, \cdots, r_{c} are positive integers then

$$
\sum_{j=1}^{c} \frac{2}{r_{j}} \prod_{t=1}^{c} \frac{r_{t}}{r_{t}+1} \leqq 1
$$

with equality if and only if $c \leqq 2$ and either r_{1} or r_{2} is equal to 1.
Proof. Let E_{s} denote the s th elementary symmetric function of the numbers $1 / r_{1}, \cdots, 1 / r_{c}$; then

$$
\begin{equation*}
0 \leqq \prod_{t=1}^{c}\left(1-1 / r_{t}\right)=1-E_{1}+E_{2}-E_{3}+\cdots+(-1)^{c} E_{c} \tag{1}
\end{equation*}
$$

with equality if and only if one of the r_{t} is 1 . Therefore

[^0]
[^0]: ${ }^{1}$ This work was supported by the Air Force Office of Scientific Research.

