References

1. Jacques Herbrand, Recherches sur la theorie de la demonstration, Travaux de la Société des Sciences et des Lettres de Varsovie, Classe III sciences mathématiques et physiques, no. 33 (1930).
2. -_, Sur le probleme fondamental de la logique mathematique, Comptes Rendus des séances de la Société des Sciences et des Lettres de Varsovie, Classe III sciences mathématiques et physiques, no. 24 (1931).
3. John van Heijenoort, Editor, Jacques Herbrand, Ecrits Logiques, Presses Universitaires, Paris (to appear)

Harvard University and
Princeton University

SIMPLY INVARIANT SUBSPACES¹

BY T. P. SRINIVASAN
Communicated by Edwin Hewitt, March 18, 1963

Let L^{1}, L^{2} denote respectively the spaces of summable and square summable functions on the circle group and $\boldsymbol{H}^{1}, \boldsymbol{H}^{2}$ their subspaces consisting of those functions whose Fourier coefficients vanish for negative indices. A closed subspace M of L^{1} or L^{2} is "invariant" if

$$
\chi M \subset M
$$

and "simply invariant" if the above inclusion is strict, where χ is the character

$$
\chi(x)=e^{i x} .
$$

The structure of simply invariant subspaces is known, namely, they are precisely the subspaces of the form $q H^{1}$ or $q H^{2}$ (respectively) where q is a measurable function of modulus 1 a.e. Beurling [1] first proved this for subspaces $M \subset H^{2}$; for $M \subset H^{1}$, this is due to de LeeuwRudin [5]; for $M \subset L^{2}$, due to Helson-Lowdenslager [3] and for $M \subset L^{1}$, due to Forelli [2]. In [3] Helson-Lowdenslager also gave a simple proof of the H^{2} case, free of function theoretic considerations. Using their arguments Hoffman [4] extended this result to simply invariant subspaces of $\boldsymbol{H}^{2}(d m)$ defined over logmodular algebras. In this paper we prove this result for simply invariant subspaces of $L^{2}(d m)$ and $L^{1}(d m)$ over logmodular algebras; the results of the previous authors follow as a corollary. The proofs of the previous authors

[^0]
[^0]: ${ }^{1}$ This work was done while I held a visiting appointment at the University of California, Berkeley.

 I thank Professors Helson and Ju-kwei Wang for the useful discussions I had with them.

