EXAMPLES OF DIRECT PRODUCTS OF SEMIGROUPS OR GROUPOIDS ${ }^{1}$

BY TAKAYUKI TAMURA
Communicated by George E. Forsythe, December 31, 1962

1. Introduction. The direct product $G_{1} \times \cdots \times G_{n}$ of groupoids G_{i} 's is defined by $G_{1} \times \cdots \times G_{n}=\left\{\left(x_{1}, \cdots, x_{n}\right) ; x_{i} \in G_{i}, i=1, \cdots, n\right\}$ where $\left(x_{1}, \cdots, x_{n}\right)=\left(y_{1}, \cdots, y_{n}\right)$ means $x_{i}=y_{i}(i=1, \cdots, n)$ and $\left(x_{i}, \cdots, x_{n}\right)\left(y_{1}, \cdots, y_{n}\right)=\left(x_{1} y_{1}, \cdots, x_{n} y_{n}\right)$.

If a semigroup A contains a subsemigroup which is isomorphic onto B, we say that A contains B.

Let i_{t} be one of $1, \cdots, n$, and let $i_{t} \neq i_{s}$ if $t \neq s . G_{i_{1}} \times \cdots \times G_{i_{m}}$, $1 \leqq m<n$, is called a partial product with length m of $G_{1} \times \cdots \times G_{n}$.

It is familiar that if G_{i} 's are groups, their direct product contains every partial product; but this is not true in the case of groupoids, not even in the case of semigroups. We can show the examples of direct product which contain no partial product. Such a direct product is called a completely exclusive direct product.

Theorem 1. $G_{1} \times \cdots \times G_{n}$ is a completely exclusive direct product of groupoids G_{1}, \cdots, G_{n} if and only if no partial product with length $n-1, G_{1} \times \cdots \times G_{i-1} \times G_{i+1} \times \cdots \times G_{n}$ is homomorphic into G_{i} $(i=1, \cdots, n)$.

Corollary 1. If $G_{1} \times \cdots \times G_{n}$ is completely exclusive, then a partial product with length >1 is also completely exclusive.
2. Example for groupoids. Let G_{n} be a set of n elements and ϕ be a cycle of the n elements, i.e., a cyclic permutation. The product of elements of G_{n} is defined by:

$$
a b=(a) \phi \quad \text { for all } a, b \in G_{n}
$$

Such a groupoid G_{n} is called a cyclic left constant groupoid. A cyclic left constant groupoid is uniquely determined by n within isomorphism, and we see that a cyclic left constant groupoid has neither idempotent element nor proper subgroupoid, and that if m_{1}, \cdots, m_{k} are relatively prime in pairs and if $G_{m_{1}}, \cdots, G_{m_{k}}$ are cyclic left constant groupoids of order m_{1}, \cdots, m_{k} respectively, then $G_{m_{1}} \times \cdots$ $\times G_{m_{k}}$ is also a cyclic left constant groupoid.

[^0]
[^0]: ${ }^{1}$ This paper was delivered at the meeting of the American Mathematical Society, at Santa Barbara, California, November 18, 1961. See Notices Amer. Math. Soc. 8 (1961), 513. The precise proof will be given elsewhere.

