ISOTROPIC INFINITELY DIVISIBLE PROCESSES ON COMPACT SYMMETRIC SPACES

BY RAMESH GANGOLLI

Communicated by Edwin Hewitt, January 25, 1963

Let G be a connected compact Lie group, K a compact subgroup, such that G/K is a Riemannian symmetric homogeneous space. (See [1] for terminology and notation.) We fix once and for all a G-invariant metric on G/K. D(G/K) will stand for the algebra of those differential operators on $C^{\infty}(G/K)$ which are invariant under the action of G. $S(K \setminus G/K)$ stands for the semi-group, under convolution as product, of probability measures on G which are bi-invariant under the action of K. It is known [2] that S is a commutative semi-group. Let $\phi_n(x)$, n=0, 1, 2, \cdots be the K-spherical functions on G [1, pp. 398 ff.]. For $\mu \in S$, we define the Fourier coefficients $\hat{\mu}(n)$ $= \int_G \phi_n(x) d\mu(x)$. A measure $\mu \in S$ is said to be infinitely divisible if for each positive integer k, $\mu = \nu^k$ for some $\nu \in S$. The purpose of this note is to set down characterizations of such measures. Our main theorem is

THEOREM 1. Let $\mu \in S$ be such that $\hat{\mu}(n) \neq 0$ for any n. Then μ is infinitely divisible if and only if

$$\hat{\mu}(n) = \exp - \left(\lambda_n + \int_{G-\{e\}} (1 - \phi_n(x)) M(dx)\right)$$

where M(dx) is a non-negative measure on G, bi-invariant under K and such that $\int_G r^2 M(dx) < \infty$, r being the distance of $x \in G$ from e; and λ_n is the eigenvalue corresponding to the eigenfunction ϕ_n of an elliptic, second order operator D in S(G/K). Further, D and M are uniquely determined by μ .

Let $\mu \in S$ be such that $\hat{\mu}(n) \neq 0$ for any *n*. Call μ a generalized limit for each *n*, $\hat{\mu}(n) = \lim_{j \to \infty} \prod_{r=1}^{k_j} \hat{\mu}_{jr}(n)$ with $\mu_{jr} \in S$, $|\hat{\mu}_{jr}(n) - 1| \to 0$ as $j \to \infty$ uniformly for $1 \leq r \leq k_j$.

THEOREM 2. The class of infinitely divisible measures of Theorem 1 coincides with the class of generalized limits.

As a corollary to Theorem 1, we can state results about the Fourier coefficients $\hat{\mu}_t(n)$ of one-parameter subsemigroups of $S(K \setminus G/K)$ or what is the same thing, describe K-isotropic stochastic processes on