UNKNOTTING S1 IN S4

BY HERMAN GLUCK

Communicated by Deane Montgomery, August 6, 1962

Topologists have for some time suspected that the k-sphere S^k can be topologically knotted in the n-sphere S^n if and only if k>0 and n-k=2. Strictly speaking, this is not quite correct (because of the existence of wild embeddings), but with the appropriate local flatness condition, the conjecture has been verified by Brown [1; 2] for n-k=1, Artin [3] for n-k=2, and Stallings [4] for $n-k\geq 3$, the single undecided case occurring when k=1 and n=4.

It is the object of this note to show that, on the basis of some recent results of Homma, S^1 can not be knotted in S^4 .

1. The main theorem. R^n will denote n-dimensional Euclidean space, and we identify R^n with $R^n \times 0 \subset R^{n+1}$ so that we may write $R^n \subset R^{n+1}$. The unit sphere in R^{n+1} will be denoted by S^n . S^n can be triangulated as a combinatorial manifold so that, for each k < n, S^k appears as a subcomplex.

Let f be an embedding of a k-manifold M^k in an n-manifold M^n with the property that each point of $f(M^k)$ has a neighborhood U in M^n such that the pair $(U, U \cap f(M^k))$ is homeomorphic to the pair (R^n, R^k) . Then f is called a *locally flat* embedding and $f(M^k)$ is called a *locally flat* submanifold of M^n .

The main theorem of this paper will be

THEOREM 1.1. Let f_1 and f_2 be locally flat embeddings of S^1 in S^4 . Then there is a homeomorphism h of S^4 onto itself such that

$$hf_1=f_2.$$

Furthermore, if p is a point of $S^4-f_1(S^1)-f_2(S^1)$, then h can be chosen so as to restrict to the identity in some neighborhood of p.

Since a general position argument will prove Theorem 1.1 whenever f_1 and f_2 happen to be piecewise linear embeddings, it will be more than sufficient to prove the following theorem, in which $U_{\epsilon}(f(S^1))$ denotes the set of points in S^4 whose distance from $f(S^1)$ is less than ϵ .

THEOREM 1.2. Let f be a locally flat embedding of S^1 in S^4 . Then for any $\epsilon > 0$, there is an ϵ -homeomorphism h of S^4 onto itself such that

$$h/S^4 - U_{\epsilon}(f(S^1)) = 1,$$

 $hf: S^1 \to S^4$ is piecewise linear.