UNKNOTTING S^{1} IN S^{4}

BY HERMAN GLUCK

Communicated by Deane Montgomery, August 6, 1962
Topologists have for some time suspected that the k-sphere S^{k} can be topologically knotted in the n-sphere S^{n} if and only if $k>0$ and $n-k=2$. Strictly speaking, this is not quite correct (because of the existence of wild embeddings), but with the appropriate local flatness condition, the conjecture has been verified by Brown $[1 ; 2]$ for $n-k=1$, Artin [3] for $n-k=2$, and Stallings [4] for $n-k \geqq 3$, the single undecided case occurring when $k=1$ and $n=4$.

It is the object of this note to show that, on the basis of some recent results of Homma, S^{1} can not be knotted in S^{4}.

1. The main theorem. R^{n} will denote n-dimensional Euclidean space, and we identify R^{n} with $R^{n} \times 0 \subset R^{n+1}$ so that we may write $R^{n} \subset R^{n+1}$. The unit sphere in R^{n+1} will be denoted by S^{n}. S^{n} can be triangulated as a combinatorial manifold so that, for each $k<n, S^{k}$ appears as a subcomplex.

Let f be an embedding of a k-manifold M^{k} in an n-manifold M^{n} with the property that each point of $f\left(M^{k}\right)$ has a neighborhood U in M^{n} such that the pair ($U, U \cap f\left(M^{k}\right)$) is homeomorphic to the pair (R^{n}, R^{k}). Then f is called a locally flat embedding and $f\left(M^{k}\right)$ is called a locally flat submanifold of M^{n}.

The main theorem of this paper will be
Theorem 1.1. Let f_{1} and f_{2} be locally flat embeddings of S^{1} in S^{4}. Then there is a homeomorphism h of S^{4} onto itself such that

$$
h f_{1}=f_{2} .
$$

Furthermore, if p is a point of $S^{4}-f_{1}\left(S^{1}\right)-f_{2}\left(S^{1}\right)$, then h can be chosen so as to restrict to the identity in some neighborhood of p.

Since a general position argument will prove Theorem 1.1 whenever f_{1} and f_{2} happen to be piecewise linear embeddings, it will be more than sufficient to prove the following theorem, in which $U_{\epsilon}\left(f\left(S^{1}\right)\right)$ denotes the set of points in S^{4} whose distance from $f\left(S^{1}\right)$ is less than ϵ.

Theorem 1.2. Let f be a locally flat embedding of S^{1} in S^{4}. Then for any $\epsilon>0$, there is an ϵ-homeomorphism h of S^{4} onto itself such that
$h / S^{4}-U_{\epsilon}\left(f\left(S^{1}\right)\right)=1$,
$h f: S^{1} \rightarrow S^{4}$ is piecewise linear.

