ON REAL JORDAN ALGEBRAS

BY M. KOECHER
Communicated by N. Jacobson, March 6, 1962

Let X be a vector space of the finite dimension n over the field R of the real numbers. For a (scalar or vector valued) function f defined in a neighbourhood of $x \in X$ and differentiable in x, the operator

$$
\Delta_{x}^{u} f(x)=\left.\frac{d}{d \tau} f(x+\tau u)\right|_{\tau=0}
$$

is defined and linear for every $u \in X$.
We consider triples (Y, ω, c) fulfilling the following conditions:
(i) Y is an open and connected subset of X such that $\lambda>0$ and $y \in Y$ implies $\lambda y \in Y$.
(ii) $\omega=\omega(y)$ is a continuous real-valued function on the closure \bar{Y} of Y that is homogeneous of degree n, positive, and real analytic in Y, and vanishes on the boundary of Y. Furthermore, the Hessian $\Delta_{v}^{u} \Delta_{y}^{v} \log \omega(y)$ is nonsingular for $y \in Y$.

Let c be a given point in Y and denote by $\sigma(u, v)$ the Hessian of $\log \omega(y)$ at the point $y=c$. Without restriction we may assume that $\omega(c)=1$ holds. Since $\sigma(u, v)$ is nonsingular, the adjoint transformation A^{*} (with respect to σ) is defined for every linear transformation A of X. We form the group Σ^{\prime} of those linear transformations W of X for which $y \rightarrow W y$ is a bijective map of Y onto itself and for which $\omega(W y)$ $=\|W\| \omega(y)$ holds identically for $y \in Y$. Here $\|W\|$ denotes the absolute value of the determinant of W. Let Σ be the subgroup of Σ^{\prime} consisting of the transformations W in Σ^{\prime} for which $W^{*} \in \Sigma^{\prime}$ holds. The triple (Y, ω, c) is called an Ω-domain, if (i), (ii) hold and in addition
(iii) Σ acts transitively on Y.

On the other hand, we consider in X a Jordan algebra, i.e., a bilinear and commutative composition $(x, y) \rightarrow x y$ of $X \times X \rightarrow X$ fulfilling

$$
x^{2}(x y)=x\left(x^{2} y\right)
$$

for every x, y in X. Such a Jordan algebra, that is, the vector space X together with the composition, shall be denoted by A. For every $x \in X$ the mapping $y \rightarrow x y$ determines a linear transformation $L(x)$ of X such that $x y=L(x) y$. Denote by $\tau(x, y)$ the trace of $L(x y)$. Then $\tau(x, y)$ is a symmetric bilinear form on X. The Jordan algebra A is called semi-simple if $\tau(x, y)$ is nonsingular. It is known, that a semisimple Jordan algebra contains a unit element c. Besides the linear

