# SOLUTION OF THE DIRICHLET PROBLEM BY INTERPOLATING HARMONIC POLYNOMIALS ${ }^{1}$ 

BY J. H. CURTISS<br>Communicated by John W. Green, February 23, 1962

1. Introduction. Let $D$ be a bounded simply connected region of the complex $z$-plane which is regular for the Dirichlet problem, let $C$ be the boundary of $D$, and let $u$ be a continuous function on $C$ to the real numbers. Some time ago J. L. Walsh [1, p. 517] suggested that it might be possible to define a sequence of harmonic polynomials by coincidence with the values of $u$ in points so chosen on $C$ that the polynomials converge on $D$ to the solution of the corresponding Dirichlet problem. He showed that a convergent interpolation process of this type is available if $D$ is a circular disk $[1 ; 2]$. Recently the author [3] raised the general question anew, and Walsh [4] then extended his earlier result to elliptical disks. For both theoretical and practical reasons it seems worthwhile to develop a general convergence theory, and progress toward this goal is announced here in Theorems 3.2 and 3.3 below.

## 2. Existence and structure of harmonic interpolation polynomials.

 A harmonic polynomial of degree $n$ can be written as $h(z)=a_{0}$ $+\sum_{j=1}^{n}\left(a_{j} z^{j}+\bar{a}_{j} z^{j}\right)$, where $a_{0}$ is real, $a_{n} \neq 0$, and the bar over a letter denotes conjugate complex. The real and imaginary parts of any finite complex linear combination of the monomials $1, z, z^{2}, \cdots$, $\bar{z}, \bar{z}^{2}, \cdots$ are harmonic polynomials. Therefore if such a combination vanishes identically on the boundary of a bounded region, then all of the coefficients must be zero. If $p_{1}(z), p_{2}(z), \cdots, p_{n}(z)$ are any complex polynomials in $z$ of respective degrees $1,2, \cdots, n$, then the expression $b_{0}+\sum_{j=1}^{n}\left[b_{j} p_{j}(z)+\bar{b}_{j}\left(p_{j}(z)\right)^{-}\right]$is also a harmonic polynomial of degree $n$, where now $\left(p_{j}(z)\right)^{-}$denotes the complex conjugate of $p_{j}(z)$.Given points $z_{1}, z_{2}, \cdots, z_{2 n+1}$ and real or complex numbers $u_{1}, u_{2}, \cdots, u_{2 n+1}$, a necessary and sufficient condition that there exists a unique set of $2 n+1$ numbers $c_{0}, c_{1}, \cdots, c_{n}, d_{1}, \cdots, d_{n}$ satisfying the system of linear algebraic equations

$$
P\left(z_{h}\right)=c_{0}+\sum_{j=1}^{n}\left[c_{j} p_{j}\left(z_{h}\right)+d_{j}\left(p_{j}\left(z_{h}\right)\right)^{-}\right]=u_{h}, \quad h=1,2, \cdots, 2 n+1
$$

[^0]
[^0]:    ${ }^{1}$ This research was supported in part by the United States Air Force through the Air Force Research and Development Command, under Contract Number AF 49(638)-862.

