DISCOVERY OF AN HADAMARD MATRIX OF ORDER $9 \mathbf{2 1}^{1}$

BY LEONARD BAUMERT, S. W. GOLOMB AND MARSHALL HALL, JR. Communicated by F. Bohnenblust, December 29, 1961

An Hadamard matrix H is an n by n matrix all of whose entries are +1 or -1 which satisfies $H H^{T}=n I, H^{T}$ being the transpose of H. The order n is necessarily 1,2 or $4 t$, with t a positive integer. R. E. A. C. Paley [3] gave construction methods for various infinite classes of Hadamard matrices, chiefly using properties of quadratic residues in finite fields. These constructions cover all values of $4 t \leqq 200$, except $4 t=92,116,156,172,184,188$. Further constructions have been given by J. Williamson [5; 6], A. Brauer [1], M. Hall [2] and R. Stanton and D. Sprott [4]. Williamson's first paper gave an Hadamard matrix of order 172, incorporating a special automorphism of order 3. The same method may be applied to $92,116,156$, and 188 , but Williamson did not do so, principally because of the amount of computation involved.

Williamson's method has been applied to $4 t=92$ using the IBM 7090 at the Jet Propulsion Laboratory. The matrix H has the form

$$
H=\left|\begin{array}{rrrr}
A & B & C & D \\
-B & A & -D & C \\
-C & D & A & -B \\
-D & -C & B & A
\end{array}\right|
$$

where each of A, B, C, D is a 23 by 23 symmetric circulant matrix. We give here the first row of each of A, B, C, D writing + for +1 and - for -1 .

References

1. A. Brauer, On a new class of Hadamard determinants, Math. Z. 58 (1953), 219225.
[^0]
[^0]: ${ }^{1}$ The work reported in this paper was conducted at the Jet Propulsion Laboratory of the California Institute of Technology under a program sponsored by the National Aeronautics and Space Administration, Contract number NASw-6.

