## MODEL THEORIES WITH TRUTH VALUES IN A UNIFORM SPACE

BY C. C. CHANG AND H. JEROME KEISLER Communicated by J. W. Green, November 25, 1961

In recent years the ultraproduct construction has been applied, e.g. in [4] and [2], to obtain a series of results in the theory of models for the ordinary two-valued first-order predicate logic. Most of the results in [4] and [2] have been generalized in [1] to predicate logic with truth values in the closed real unit interval. In this note we shall see that many of the methods and results of [4] and [2] and [1] can actually be extended to a very wide class of many-valued predicate logics, with truth values in any reasonably well-behaved compact Hausdorff uniform space.

We shall give a detailed statement of the definitions and two representative theorems. A complete account of the theory, including a number of generalizations of theorems from [2] and [1], as well as proofs, will appear in a future publication.

Let L be a formal system with the following symbols: a denumerable set V of individual variables, a set P of finitary predicates, a set C of finitary sentential connectives, a set C of quantifier symbols, and distinguished symbols  $e \in P$ , C, C, C, where C and C are binary. Let the set C of formulas be the least set C such that

- (i)  $\{p(v_1, \dots, v_n) | p \in P, p \text{ is } n\text{-ary}, v_1, \dots, v_n \in V\} \subseteq H;$
- (ii)  $\{c(\phi_1, \dots, \phi_k) | c \in C, c \text{ is } k\text{-ary}, \phi_1, \dots, \phi_k \in H\} \subseteq H;$
- (iii)  $\{qv(\phi) | q \in Q, v \in V, \phi \in H\} \subseteq H$ .

Free variables are defined as usual.  $\phi$  is a sentence if  $\phi \in F$  and  $\phi$  has no free variables.

Given sets X, Y, and Z, S(X) shall denote the set of all subsets of X and  $f: Y \rightarrow Z$  shall mean f is a function on Y into Z.

If X is a uniform space with uniformity  $\mathfrak U$  (see [3]), a set function  $g: S(X) \to X$  is uniformly continuous if for each  $U \in \mathfrak U$ , there exists  $U' \in \mathfrak U$  such that whenever  $Y \subseteq X \cap U'[Z]$  and  $Z \subseteq X \cap U'[Y]$ , then  $(g(Y), g(Z)) \in U$ .  $\mathfrak X = (X, f, t, \hat{c}, \hat{q})_{c \in C, q \in Q}$  is a model theory if

- (i) X is a compact Hausdorff uniform space;
- (ii)  $f, t \in X$  and  $f \neq t$ ;
- (iii) for each k-ary  $c \in C$ ,  $\hat{c}: X^k \to X$  and  $\hat{c}$  is continuous;
- (iv) for each  $q \in Q$ ,  $\hat{q}: S(X) \to X$  and  $\hat{q}$  is uniformly continuous.  $\mathfrak{A} = (A, p_{\mathfrak{A}})_{n \in P}$  is a structure over X if
  - (i)  $A \neq 0$ ;
  - (ii) for each *n*-ary  $p \in P$ ,  $p_{\mathfrak{A}}: A^n \to X$ ;
  - (iii) for  $a, b \in A$ ,  $e_{\mathfrak{A}}(a, b) = t$  if a = b, and  $e_{\mathfrak{A}}(a, b) = f$  if  $a \neq b$ .