MODEL THEORIES WITH TRUTH VALUES IN A UNIFORM SPACE

BY C. C. CHANG AND H. JEROME KEISLER
Communicated by J. W. Green, November 25, 1961

In recent years the ultraproduct construction has been applied, e.g. in [4] and [2], to obtain a series of results in the theory of models for the ordinary two-valued first-order predicate logic. Most of the results in [4] and [2] have been generalized in [1] to predicate logic with truth values in the closed real unit interval. In this note we shall see that many of the methods and results of [4] and [2] and [1] can actually be extended to a very wide class of many-valued predicate logics, with truth values in any reasonably well-behaved compact Hausdorff uniform space.

We shall give a detailed statement of the definitions and two representative theorems. A complete account of the theory, including a number of generalizations of theorems from [2] and [1], as well as proofs, will appear in a future publication.

Let L be a formal system with the following symbols: a denumerable set V of individual variables, a set P of finitary predicates, a set C of finitary sentential connectives, a set Q of quantifier symbols, and distinguished symbols $e \in P, \& \in C, \exists \in Q$, where e and $\&$ are binary. Let the set F of formulas be the least set H such that
(i) $\left\{p\left(v_{1}, \cdots, v_{n}\right) \mid p \in P, p\right.$ is n-ary, $\left.v_{1}, \cdots, v_{n} \in V\right\} \subseteq H$;
(ii) $\left\{c\left(\phi_{1}, \cdots, \phi_{k}\right) \mid c \in C, c\right.$ is k-ary, $\left.\phi_{1}, \cdots, \phi_{k} \in H\right\} \subseteq H$;
(iii) $\{q v(\phi) \mid q \in Q, v \in V, \phi \in H\} \subseteq H$.

Free variables are defined as usual. ϕ is a sentence if $\phi \in F$ and ϕ has no free variables.

Given sets X, Y, and $Z, S(X)$ shall denote the set of all subsets of X and $f: Y \rightarrow Z$ shall mean f is a function on Y into Z.

If X is a uniform space with uniformity \mathfrak{U} (see [3]), a set function $g: S(X) \rightarrow X$ is uniformly continuous if for each $U \in \mathcal{U}$, there exists $U^{\prime} \in \mathcal{U}$ such that whenever $Y \subseteq X \cap U^{\prime}[Z]$ and $Z \subseteq X \cap U^{\prime}[Y]$, then $(g(Y), g(Z)) \in U . X=(X, f, t, \hat{c}, \hat{q})_{c \in C, q \in \mathcal{Q}}$ is a model theory if
(i) X is a compact Hausdorff uniform space;
(ii) $f, t \in X$ and $f \neq t$;
(iii) for each k-ary $c \in C, \hat{c}: X^{k} \rightarrow X$ and \hat{c} is continuous;
(iv) for each $q \in Q, \hat{q}: S(X) \rightarrow X$ and \hat{q} is uniformly continuous. $\mathfrak{H}=(A, p \mathfrak{A})_{p \in P}$ is a structure over X if
(i) $A \neq 0$;
(ii) for each n-ary $p \in P$, $p q: A^{n} \rightarrow X$;
(iii) for $a, b \in A, e_{\mathfrak{I}}(a, b)=t$ if $a=b$, and $e_{\mathfrak{r}}(a, b)=f$ if $a \neq b$.

