OBSTRUCTIONS TO THE EXISTENCE OF ALMOST COMPLEX STRUCTURES

BY W. S. MASSEY
Communicated June 9, 1961

1. Definitions and notation. Let M be an orientable, differentiable manifold of dimension $2 n$ and let $\xi=\left(E_{\xi}, M, R^{2 n}, \pi\right)$ denote the tangent bundle of M; we assume the structural group of ξ has been reduced from the full linear group to the special orthogonal group $\boldsymbol{S O}(2 n)$. By definition, M admits an almost complex structure if and only if the associated fibre bundle $\eta=\left(E, M, \Gamma_{n}, p\right)$ admits a cross section; ${ }^{1}$ here Γ_{n} denotes the homogeneous space $S O(2 n) / U(n)$. In this paper, we will study the obstructions to a cross section for any fibre bundle $\theta=\left(E, B, \Gamma_{n}, p\right)$ with structural group $S O(2 n)$ and base space B a $C W$-complex. If $s: B^{q} \rightarrow E$ is a cross section of θ over the q-skeleton of the base space B, then the obstruction to extending s over the $(q+1)$-skeleton is denoted by

$$
c^{q+1}(s) \in H^{q+1}\left(B, \pi_{q}\left(\Gamma_{n}\right)\right)
$$

Since θ is a bundle with structural group $S O(2 n)$, the following characteristic classes are defined:
(a) Integral Stiefel-Whitney classes,

$$
W_{i}(\theta) \in H^{i}(B, Z), \quad 3 \leqq i \leqq 2 n-1, \quad i \text { odd }
$$

(Recall that $2 \cdot W_{i}(\theta)=0$.)
(b) Euler-Poincaré class, $W_{2 n}(\theta) \in H^{2 n}(B, Z)$.
(c) Pontrjagin classes $p_{i}(\theta) \in H^{4 i}(B, \boldsymbol{Z}), 0 \leqq i \leqq n$.

In an analogous manner, if ξ is a fibre bundle with base space B and structural group $U(n)$, the Chern classes of ξ will be denoted by $c_{i}(\xi) \in H^{2 i}(B, Z), 0 \leqq i \leqq n$.
2. Statement of results. The homotopy group $\pi_{q}\left(\Gamma_{n}\right)$ is called stable if $q<2 n-1$; it is well known that the stable homotopy groups $\pi_{q}\left(\Gamma_{n}\right)$ for fixed q and variable n are all isomorphic; see Gray [4, p. 432]. The stable homotopy groups of Γ_{n} have been determined by Bott [2]; he showed that in the stable range,

[^0]
[^0]: ${ }^{1}$ Standard references on the subject of almost complex structures are Ehresmann's lecture at the 1950 International Congress of Mathematicians [3] and the last section of Steenrod's book [10].

 The author would like to take this opportunity to acknowledge that his proof of the two theorems announced in Abstract 60T-24, Notices Amer. Math. Soc. vol. 7 (1960) p. 1001, contains an apparently irreparable gap. Whether or not these two theorems are correct is not known.

