COHOMOLOGY OF MAXIMAL IDEAL SPACES

BY ANDREW BROWDER
Communicated by I. M. Singer, July 14, 1961

Let A be a commutative Banach algebra with unit, and let M be the maximal ideal space of A. We say that A is generated by x_{1}, \cdots, x_{n} if the polynomials $p\left(x_{1}, \cdots, x_{n}\right)$ form a dense subalgebra of A. Let $H^{i}(M, C)$ denote the j th Cech cohomology group of M with complex coefficients.

Theorem. If A is generated by n elements, then $H^{i}(M, C)=0$ for $j \geqq n$.

Proof. If x_{1}, \cdots, x_{n} generate A, then the map of M into C^{n} given by $h \rightarrow\left(h\left(x_{1}\right), \cdots, h\left(x_{n}\right)\right)$ is a homeomorphism of M onto a compact set K. It is known (see, e.g., [1]) that K is polynomially convex, i.e., if V is any open set containing K, there exists an analytic polyhedron U defined by polynomials, such that $K \subset U \subset V$. Each such polyhedron U is a domain of holomorphy (Stein manifold) and a Runge domain. For any n-dimensional Stein manifold U, it is known that $H^{j}(U, C)=0$ for $j>n$. (See [2] for a proof.) For any Runge domain U in C^{n}, Serre has shown [3] that $H^{n}(U, C)=0$. The proof is completed by observing the following nonstandard but elementary continuity property of Cech cohomology:

Fact. Let X be a compact subset of a metric space, G an abelian group, j a non-negative integer. If for every open set $V \supset K$, there exists an open U with $K \subset U \subset V$ and $H^{i}(U, G)=0$, then $H^{j}(K, G)=0$.

Corollary. Let M be an n-dimensional compact orientable manifold. Let $C(M)$ denote the ring of all continuous complex-valued functions on M, normed by the sup norm. Then $C(M)$ requires at least $n+1$ generators.

Remarks. 1. For $n=1$, the condition of the theorem is both necessary and sufficient; a compact subset K of the plane is polynomially convex if and only if K has connected complement, which is equivalent to $H^{1}(K, C)=0$.
2. It is of course trivial that at least $n+1$ real-valued functions are required to generate $C(M)$ when M is a compact n-dimensional manifold, but it should be observed that in general, a compact space X need not require as many complex functions to generate $C(X)$ as it does real functions. Example: If X is a compact connected plane set

