A NEW PROOF AND AN EXTENSION OF HARTOG'S THEOREM¹

BY LEON EHRENPREIS

Communicated by Lipman Bers, July 17, 1961

Let R denote n dimensional real euclidean space and let Ω_0 be a shell in R, by this we mean that there exist open sets Ω_1 , Ω_2 where Ω_1 is relatively compact and has its closure contained in Ω_2 , and Ω_0 $=\Omega_2$ -closure Ω_1 . Call Γ_j the boundary of Ω_j . Let $D=(D_1, \cdots, D_r)$ be a sequence of linear partial differential operators with constant coefficients on R with r>1. For a function f on R we write Df=0 if $D_i f = 0$ for $j = 1, 2, \dots, r$. We want to determine the conditions on D in order that the following property should hold: If f is an indefinitely differentiable function on Ω_0 with Df = 0 then there exists a unique indefinitely differentiable function h on Ω_2 with Dh=0 and h=f on Ω_0 . Hartog's theorem asserts that such an extension of f is possible if R is complex euclidean space of complex dimension n/2 = m > 1 and Ω_1 and Ω_2 are topological balls, and $D_i = \partial/\partial x_{2i-1} + i \partial/\partial x_i$ for $j=1, 2, \cdots, m$ where $x=(x_1, \cdots, x_n)$ are the coordinates on R. An extension of Hartog's theorem has been found by S. Bochner in [1] by a different method.

We can find a function g defined and C^{∞} on Ω_2 such that g = f on Ω_0 except on an arbitrarily small neighborhood $N(\Gamma_1)$ in Ω_0 . (We choose $N(\Gamma_1)$ so small that its closure does not meet Γ_2 .) Call $\Omega_3 = \Omega_1 \cup N(\Gamma_1)$. We have Dg = 0 on $\Omega - \Omega_3$. We set $g_j = D_j g$, so g_j are C^{∞} and have their supports in the closure of Ω_3 ; in particular the g_j are of compact support. For any j, k,

$$(1) D_k g_j = D_j g_k$$

since both sides are equal to $D_k D_j g$ in Ω_3 and zero outside.

Next we take the Fourier transforms: Call P_k the Fourier transform of D_k and G_k that of g_k ; P_k is a polynomial and G_k an entire function of exponential type on C (complex n-space); the exponential type of G_k is determined by the convex hull K of Ω_3 . Moreover, G_k decreases on the real part of C faster than the reciprocal of any polynomial (see [5]). Relation (1) becomes

$$(2) P_k(z)G_j(z) = P_j(z)G_k(z).$$

¹ Work supported by ONR 432 JLP.