A NEW PROOF AND AN EXTENSION OF HARTOG'S THEOREM ${ }^{1}$

BY LEON EHRENPREIS

Communicated by Lipman Bers, July 17, 1961
Let R denote n dimensional real euclidean space and let Ω_{0} be a shell in R, by this we mean that there exist open sets Ω_{1}, Ω_{2} where Ω_{1} is relatively compact and has its closure contained in Ω_{2}, and Ω_{0} $=\Omega_{2}-$ closure Ω_{1}. Call Γ_{j} the boundary of Ω_{j}. Let $D=\left(D_{1}, \cdots, D_{r}\right)$ be a sequence of linear partial differential operators with constant coefficients on R with $r>1$. For a function f on R we write $D f=0$ if $D_{j} f=0$ for $j=1,2, \cdots, r$. We want to determine the conditions on D in order that the following property should hold: If f is an indefinitely differentiable function on Ω_{0} with $D f=0$ then there exists a unique indefinitely differentiable function h on Ω_{2} with $D h=0$ and $h=f$ on Ω_{0}. Hartog's theorem asserts that such an extension of f is possible if R is complex euclidean space of complex dimension $n / 2=m>1$ and Ω_{1} and Ω_{2} are topological balls, and $D_{j}=\partial / \partial x_{2 j-1}+i \partial / \partial x_{j}$ for $j=1,2, \cdots, m$ where $x=\left(x_{1}, \cdots, x_{n}\right)$ are the coordinates on R. An extension of Hartog's theorem has been found by S. Bochner in [1] by a different method.

We can find a function g defined and C^{∞} on Ω_{2} such that $g=f$ on Ω_{0} except on an arbitrarily small neighborhood $N\left(\Gamma_{1}\right)$ in Ω_{0}. (We choose $N\left(\Gamma_{1}\right)$ so small that its closure does not meet Γ_{2}) Call $\Omega_{3}=\Omega_{1} \cup N\left(\Gamma_{1}\right)$. We have $D g=0$ on $\Omega-\Omega_{3}$. We set $g_{j}=D_{j} g$, so g_{j} are C^{∞} and have their supports in the closure of Ω_{3}; in particular the g_{j} are of compact support. For any j, k,

$$
\begin{equation*}
D_{k} g_{j}=D_{j} g_{k} \tag{1}
\end{equation*}
$$

since both sides are equal to $D_{k} D_{j} g$ in Ω_{3} and zero outside.
Next we take the Fourier transforms: Call P_{k} the Fourier transform of D_{k} and G_{k} that of $g_{k} ; P_{k}$ is a polynomial and G_{k} an entire function of exponential type on C (complex n-space); the exponential type of G_{k} is determined by the convex hull K of Ω_{3}. Moreover, G_{k} decreases on the real part of C faster than the reciprocal of any polynomial (see [5]). Relation (1) becomes

$$
\begin{equation*}
P_{k}(z) G_{j}(z)=P_{j}(z) G_{k}(z) \tag{2}
\end{equation*}
$$

[^0]
[^0]: ${ }^{1}$ Work supported by ONR 432 JLP.

