FLOWS ON SOME THREE DIMENSIONAL HOMOGENEOUS SPACES

BY L. AUSLANDER,¹ L. GREEN² AND F. HAHN

Communicated by W. S. Massey, May 17, 1961

1. Flows on surfaces of constant negative curvature have been investigated for some time. The geodesic flow [3] and the horocycle flow [2] have known minimal and ergodic properties. These flows may be looked at as flows induced on a three dimensional homogeneous space by a one parameter subgroup of a Lie group [4]. This idea has been carried further in [1; 5] where one parameter flows on general nilmanifolds are studied.

The manifolds considered here are all compact manifolds of the form G/D where G is a noncompact connected, simply connected three dimensional Lie group and D a discrete uniform subgroup. If $\phi: T \rightarrow G$ is a one parameter subgroup of G, then the one parameter flow defined by $t(gD) = \phi(t)gD$, is an action of the reals on G/D. The classification as to which of these flows are minimal and which are ergodic is now complete. In this note we outline this classification; complete proofs will be presented elsewhere.

There are only three cases to consider: simple, nilpotent, and solvable but not nilpotent.

2. *G* simple. If *G* is simple and noncompact then its Lie algebra \mathfrak{G} is isomorphic to the Lie algebra of the two by two real matrices with trace zero. Each one parameter subgroup of *G* is of the form $\phi(t) = \exp \overline{X}t$, where $\overline{X} \in \mathfrak{G}$. Let G(2) be the group of all 2×2 real matrices of determinant one. *G* is the universal covering group of G(2) and we let η be the covering homomorphism $\eta: G \rightarrow G(2)$.

THEOREM 1. If D is a discrete uniform subgroup of G then the mapping $\psi: G/D \rightarrow G(2)/\eta(D)$ given by $\psi(gD) = \eta(g)\eta(D)$ is a finite covering and $\eta(D)$ is discrete.

THEOREM 2. Let G be the connected, simply connected, noncompact, three dimensional, simple Lie group; and let D be a discrete uniform subgroup of G; and let $\phi(t) = \exp \overline{X}t$. The following statements hold:

⁽¹⁾ If \overline{X} has real nonzero eigenvalues the one parameter flow induced

 $^{^{\}rm t}$ Research supported by N. S. F. Grant 15565 and O. O. R. contract SAR-DA-19020-ORD 5254.

² Research supported by N. S. F. Grant 11287.