CONICAL SINGULAR POINTS OF DIFFEOMORPHISMS

BY WILLIAM HUEBSCH AND MARSTON MORSE

Communicated by Edwin Moise, May 27, 1961

1. Introduction. The Schoenflies extension Λ_{ϕ} of a differentiable mapping ϕ, constructed in the proof of Theorem 2.1 of [1], has at most a differential singularity of conical type (to be defined). This fact has far-reaching consequences which are reflected in the theorems of [2]. Theorem 1.1 below is one of these consequences. No proof of Theorem 1.1 is given here.

Let S be an ($n-1$)-sphere in a euclidean n-space E and let $J S$ be the closed n-ball in E bounded by S.

Theorem 1.1. Let z be an arbitrary point of S. A real analytic diffeomorphism f of S into E admits a homeomorphic extension, F, defined over a set $Z \cup_{z}$, where Z is some open neighborhood of $J S-z$, and $F \mid Z$ is a real analytic diffeomorphism of Z into E.

This extension F of f defines an analytic diffeomorphism of its domain of definition with z deleted, and a homeomorphism with z included. F has no singularity on the interior of S, or on S, except at most at z.

We continue with a detailed exposition leading to a proof of Theorem 2.1.

Notation. Let E be the euclidean n-space of points (or vectors) x with rectangular coordinates (x_{1}, \cdots, x_{n}). Let $\|x\|$ be the distance of x from the origin O. Set

$$
\begin{equation*}
S=\{x \mid\|x\|=1\} \tag{1.1}
\end{equation*}
$$

If M is a topological $(n-1)$-sphere in $E, J M$ shall denote the open interior of M. The complement of a subset Y of E will be denoted by $C Y$. We use diff as an abbreviation of diffeomorphism.
$A C_{z}^{m}$-diff, $m>0$. Let $x \rightarrow G(x)$ be a homeomorphism into E of an open neighborhood X of a point $z \in E$; if $G \mid(X-z)$ is a C^{m}-diff into E, G will be called a C_{z}^{m}-diff of X into E.

An admissible cone K_{z}. Let K_{z} be a closed n-cone in E with vertex z, and with sections orthogonal to A which are closed ($n-1$)-balls whose centers are on A. The cone K_{z} is determined by z, A and any one of its orthogonal sections meeting $A-z$.

A conical point z of G. Let G be a C_{z}^{m}-diff into E of an open neighborhood X of z. The point z will be said to be a conical point of G and

