EXAMPLES OF PERIODIC MAPS ON EUCLIDEAN SPACES WITHOUT FIXED POINTS

BY J. M. KISTER ${ }^{1}$
Communicated by Deane Montgomery, March 29, 1961

Let T be a map of period r on a Euclidean space E^{n}. Smith seems to have been the first to consider fixed points of T. He showed that T has a fixed point if r is a prime in [4], extended this result to r a power of a prime, and raised the question concerning the existence of a fixed point for r not a prime power in [5]; also cf. Problem 33 in [3]. Conner and Floyd gave an example of a contractible manifold M_{r} for every r not a prime power, and a map T of period r on M_{r} without fixed points [2]. They conjectured that M_{r} was a Euclidean space. This note shows that a slight modification of their example is Euclidean, hence:

Theorem. If r is an integer which is not a power of a prime, then there exists a triangulation τ of $E^{9 r}$, a map T of period r on $E^{9 r}$ without fixed points, and T is simplicial relative to τ.

I wish to express my indebtedness to Professor Floyd for his help and encouragement.

Preliminaries. Let K be a subcomplex of a Euclidean space E under a triangulation σ. Let $\sigma_{K}^{(1)}$ be the subdivision of σ obtained by adding barycenters of all simplexes not contained in K, cf. [6, p. 251]. $\sigma_{K}^{(i+1)} \equiv\left(\sigma_{i K}^{(i)}\right)_{K}^{(i)}$. If K is the empty complex, $\sigma_{K}^{(i)} \equiv \sigma^{(i)}$, the usual i th barycentric subdivision. Denote the closed star of K in σ by $V(K, \sigma)$ and let $V^{2}(K, \sigma)=V(V(K, \sigma), \sigma) . N_{W}(K, \sigma) \equiv V\left(K, \sigma_{K}^{(2)}\right)$ is a "regular" neighborhood of K; cf. [6, p. 293]. If K is a contractible finite subcomplex having dimension m and $E=E^{n}$, where $n \geqq 2 m+5$, then it follows from Corollary 3 in [6, p. 298] that $N_{W}(K, \sigma)$ is an n-cell. Much use is made of this fact; however it will be convenient later to use the following neighborhood: $N_{1}(K, \sigma) \equiv V\left(K^{(2)}, \sigma^{(2)}\right)$, i.e. the star of K (subdivided twice barycentrically) in $\sigma^{(2)}$. Since it will be necessary to use Whitehead's result, but only in a topological way (i.e. noncombinatorial), it suffices to show that $N_{W}(K, \sigma)$ and $N_{1}(K, \sigma)$ are homeomorphic. This can be done by looking at an n-simplex ρ in the triangulation $\sigma_{K}^{(1)}$ which intersects K, and constructing a canonical homeomorphism of $N_{W}(K, \sigma) \cap \rho$ and $N_{1}(K, \sigma) \cap \rho$ in such a way that two such homeomorphisms match on p-faces, $p<n$. Let $\rho=\rho_{0} \circ \rho_{1}$,

[^0]
[^0]: ${ }^{1}$ The author holds an ONR Research Associateship at the University of Virginia.

