EXAMPLES OF PERIODIC MAPS ON EUCLIDEAN SPACES WITHOUT FIXED POINTS

BY J. M. KISTER¹

Communicated by Deane Montgomery, March 29, 1961

Let T be a map of period r on a Euclidean space E^n . Smith seems to have been the first to consider fixed points of T. He showed that T has a fixed point if r is a prime in [4], extended this result to r a power of a prime, and raised the question concerning the existence of a fixed point for r not a prime power in [5]; also cf. Problem 33 in [3]. Conner and Floyd gave an example of a contractible manifold M_r for every r not a prime power, and a map T of period r on M_r without fixed points [2]. They conjectured that M_r was a Euclidean space. This note shows that a slight modification of their example is Euclidean, hence:

THEOREM. If r is an integer which is not a power of a prime, then there exists a triangulation τ of E^{9r} , a map T of period r on E^{9r} without fixed points, and T is simplicial relative to τ .

I wish to express my indebtedness to Professor Floyd for his help and encouragement.

Preliminaries. Let K be a subcomplex of a Euclidean space E under a triangulation σ . Let $\sigma_{\kappa}^{(1)}$ be the subdivision of σ obtained by adding barycenters of all simplexes not contained in K, cf. [6, p. 251]. $\sigma_K^{(i+1)} \equiv (\sigma_K^{(i)})_K^{(i)}$. If K is the empty complex, $\sigma_K^{(i)} \equiv \sigma^{(i)}$, the usual *i*th barycentric subdivision. Denote the closed star of K in σ by $V(K, \sigma)$ and let $V^2(K, \sigma) = V(V(K, \sigma), \sigma)$. $N_W(K, \sigma) \equiv V(K, \sigma_K^{(2)})$ is a "regular" neighborhood of K; cf. [6, p. 293]. If K is a contractible finite subcomplex having dimension m and $E = E^n$, where $n \ge 2m + 5$, then it follows from Corollary 3 in [6, p. 298] that $N_W(K, \sigma)$ is an *n*-cell. Much use is made of this fact; however it will be convenient later to use the following neighborhood: $N_1(K, \sigma) \equiv V(K^{(2)}, \sigma^{(2)})$, i.e. the star of K (subdivided twice barycentrically) in $\sigma^{(2)}$. Since it will be necessary to use Whitehead's result, but only in a topological way (i.e. noncombinatorial), it suffices to show that $N_W(K, \sigma)$ and $N_1(K, \sigma)$ are homeomorphic. This can be done by looking at an *n*-simplex ρ in the triangulation $\sigma_K^{(1)}$ which intersects K, and constructing a canonical homeomorphism of $N_{W}(K, \sigma) \cap \rho$ and $N_{1}(K, \sigma) \cap \rho$ in such a way that two such homeomorphisms match on p-faces, p < n. Let $\rho = \rho_0 \circ \rho_1$,

¹ The author holds an ONR Research Associateship at the University of Virginia.