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1. The problem is to determine the maximal number of the inde
pendent continuous fields of tangent vectors on the unit w-sphere 5 n . 
The number will be denoted by \(n). 

\(n) is the maximal number of k such that the boundary homo-
morphism An,ki Tn(S

n) —» 7rw_i(0n,*) associated with the fibering 
On+i,k+i/On,ic = Sn is trivial, where On,k denotes the Stiefel manifold of 
the orthogonal fe-vectors (Mrames) in the real «-space Rn. 

The fundamental conjecture for our problem is stated as follows. 
CONJECTURE. Does \(n) =\*(w) for all n>0? 
Here, the conjectured values \*(n) are defined as follows: 

X*(») = Xr, if n s 2' - 1 (mod 2r+l), 

Ao = 0, Xi = 1, X2 = 3, X8 = 7 

and 

Xr+4 = Xr + 8. 

I t was known that the conjecture is true for the cases r = 0, 1, 2, 3 
[4]-

The obtained results on \{ri) are the following. 

THEOREM 1. (a) X*(w)gX(w). (b) If &=X*(«), then the image of 
An,jfc: 7Tn(5

n)—>7rn-i(On,jfc) coincides with the image of the composition 
HoJ:Tk(SO(n-k-l))^Tn-i(Sn-k-l)^Tn-i(On,k) ofG. Whitehead's 
homomorphism J and the homomorphism u induced by the usual injec
tion i: Sn'~k~'1(ZOntk. 

The first part (a) is provided by the recent work of Bott and 
Shapiro, Clifford modules and vector fields on spheres (mimeographed 
note), which states the existence of a continuous field of linear 
X*(#) -frames on 5 n . 

THEOREM 2. X*(w)=X(w) ifn = 2r-l (mod 2r+1) for an integer r < l l . 

Then our problem is still open in question on the sphere S2047. 

THEOREM 3. X(2 i m-1) ê X ( m - l ) + 2 î ~ 1 for i = l , 2, 3, 4. 

COROLLARY. If the above conjecture is not true for an n = 2r — 1 
(mod 2r+l) and r = 4=s — 1 (s: positive integer), then the conjecture is not 
true for all n of r^4s—l. 
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