A SIMPLE TRIANGULATION METHOD FOR SMOOTH MANIFOLDS¹

BY STEWART S. CAIRNS

Communicated by Raoul Bott, March 23, 1961

We first triangulate a compact closed m-manifold M^m of differentiability class C^r (r>1) in a euclidean space $E^r=E^{m+n}$. The method is simpler than earlier methods (see References) and is applicable to a wider class of spaces (see (F) and (G) below).

(A) For a given $\eta > 0$, let (a_1, \dots, a_{μ}) be a set of distinct points on M^m such that each point of M^m is at distance $<\eta$ from at least one point a_i .

Let d be the euclidean distance function in E^{ν} . For each $k \in (1, \dots, \mu)$, let

(1)
$$\bar{c}_k' = \{ x \in E' | d(a_k, x) \leq d(a_i, x), \quad i = 1, \dots, \mu \},$$

(2)
$$\bar{\gamma}_k^m = M^m \cap \bar{c}_k^{\nu} = \{x \in M^m \mid d(a_k, x) \leq d(a_i, x), \quad i = 1, \dots, \mu\}.$$

THEOREM. For each $p \in M^m$, let $\bar{\gamma}(p)$ be the intersection of all the sets $\bar{\gamma}_k^m$ containing p. If η is small enough, $\{\bar{\gamma}\} = \{\bar{\gamma}(p) \mid p \in M^m\}$ is a subdivision of M^m into the closed cells of a complex.

PROOF. Note first that if $i \neq k$, $d(a_k, x) = d(a_i, x)$ defines the normal bisecting $(\nu-1)$ -plane $L_{ki}^{\nu-1}$ of the segment $a_k a_i$, and $d(a_k, x) < d(a_i, x)$ defines the half-space $H_{ki}^{\nu-1}$ of E^{ν} bounded by $L_{ki}^{\nu-1}$ and containing a_k . Thus \bar{c}_k^{ν} is the closure of the open convex polyhedral ν -cell

(3)
$$c_{k}^{"} = \bigcap_{i \neq k} H_{ki}^{"} = \left\{ x \in E^{"} \middle| d(a_{k}, x) < d(a_{i}, x), i \neq k \right\},$$

which may be of infinite diameter.

(B) The set $\tilde{\gamma}_k^m = \tilde{c}_k^{\nu} \cap M^m$ is on the interior $B^{\nu}(a_k, \eta)$ of the sphere $S^{\nu-1}(a_k, \eta)$ of radius η about a_k .

For, by (A), each point of $M^m - \overline{B}^{\nu}(a_k, \eta)$ is closer to some $a_i \neq a_k$ than to a_k , and c_k^{ν} is the set of all points which are closer to a_k than to any $a_i \neq a_k$.

The fact that M^m is compact and of class C^2 implies that there exists a number $\rho > 0$ so small that no $(\nu - 1)$ -sphere of radius ρ tangent to M^m encloses a point of M^m . The cell c_k^{ν} therefore contains all points at distances $\leq \rho$ from a_k on the normal n-plane $N^n(a_k)$ to M^m at a_k , since each such point is closer to a_k than to any $a_i \neq a_k$.

(C) Hence, if $L_{ki}^{\nu-1}$ (defined above) intersects $\bar{\gamma}_k^m$, then $L_{ki}^{\nu-1} \cap N^n(a_k)$ is either vacuous or at distance $> \rho$ from a_k .

¹ This work was partly supported by NSF Grant G-14431.