ON THE CENTRAL LIMIT THEOREM IN R_k

BY R. RANGA RAO

Communicated by J. L. Doob, March 6, 1961

Let $\xi_1, \xi_2, \dots, \xi_n, \dots$, be a sequence of independent and identically distributed random vectors in R_k with finite second order moments. Let $\eta_n = (\xi_1 + \dots + \xi_n) n^{-1/2}$ and let $P_n(A) = P[\eta_n \in A]$. Let η denote a random vector in R_k which is normally distributed and whose moments of the first two orders are identical with those of ξ_1 and let $P(A) = P[\eta \in A]$. Then, by the central limit theorem in R_k , P_n weakly converges to P. A question that arises naturally here is an investigation of the error of approximation $P_n - P$. This problem has been thoroughly investigated in the case k = 1 (cf. [3; 4; 5] and also the survey [6] where a complete set of references is given). For k > 1, Bergström [1; 2] obtained bounds on the error

$$\sup_{x \in R_k} \mid F_n(x) - \Phi(x) \mid$$

where F_n , Φ are the distribution functions of η_n and η respectively. Esseen [5] gave similar bounds for the error $|P_n(A) - P(A)|$, when A is a sphere with centre at the origin. The object of this study is to investigate the error $\Delta_n(A) = P_n(A) - P(A)$ for a very wide class of sets—namely the class of all convex subsets of R_k .

2. Notation and preliminaries. Let $\xi_1 = (\xi_1^{(1)}, \dots, \xi_1^{(k)})$. We suppose that $E\xi_1^{(j)} = 0$ for $j = 1, 2, \dots, k$, and that the variance covariance matrix of ξ_1 , to be denoted by V, is nonsingular. We use the following notation for denoting the moments and cumulants of ξ_1 :

$$\beta_s = \sum_{i=1}^k E \left| \xi_1^{(j)} \right|^s;$$

the cumulant of order (s_1, s_2, \dots, s_k) will be denoted by $\lambda_1^{s_1} \cdot \lambda_2^{s_2} \cdot \dots \cdot \lambda_k^{s_k}$. Let f(t) denote the characteristic function of ξ_1 . Then the characteristic function of η_n is $[f(tn^{-1/2})]^n$. Let the polynomials $\tilde{P}_j(w)$ in the vector $w = (w_1, \dots, w_k)$ be defined by the formal identity:

(1)
$$\exp\left\{\sum_{j=3}^{\infty}\frac{1}{j!}(\lambda_1w_1+\cdots+\lambda_kw_k)^jn^{-(j-2)/2}\right\}=\sum_{j=0}^{\infty}n^{-j/2}\tilde{P}_j(w).$$

(Here the λ 's represent the cumulants of ξ_1 .) Let the functions $\tilde{P}_j(-\phi)$, $\tilde{P}_j(-\Phi)$ for $j=0, 1, \cdots$, be defined as follows: