THE MINIMUM MODULUS OF INTEGRAL FUNCTIONS OF SMALL ORDER ${ }^{1}$

P. D. BARRY

Communicated by R. P. Boas, November 1960
Let $f(z)$ be an integral function and

$$
M(r)=\max _{|z|=r}|f(z)|, \quad m(r)=\min _{|z|=r}|f(z)|
$$

If $f(z)$ has order 0 , then the $\cos \pi \rho$-theorem [1, p. 40] implies that, for any $\epsilon>0$, there is a sequence of $r \rightarrow \infty$ on which

$$
\begin{equation*}
\log m(r)>(1-\epsilon) \log M(r) \tag{1}
\end{equation*}
$$

If $\log M(r)=O\left(\log ^{2} r\right)(r \rightarrow \infty)$ then Hayman [2] proved that (1) holds outside a set of finite logarithmic measure. If $f(z)$ has order at most ρ and C is any constant, then Kjellberg [3, p. 20] showed that

$$
\text { lower log-dens } E\{m(r)>C\} \geqq 1-2 \rho,
$$

and that $1-2 \rho$ is best-possible. Surveys of the main results of this kind are given in $[1 ; 3]$.

In this field I have proved a number of results, of which I state the following. For a given function $\psi(r)(r>0)$ I use the notation

$$
\psi_{1}(r)=d \psi(r) / d \log r, \quad \psi_{2}(r)=d^{2} \psi(r) / d \log ^{2} r
$$

when these derivatives exist.
Theorem 1. Suppose that

$$
\log M(r) \leqq\{1+o(1)\} \psi(r) \quad(r \rightarrow \infty)
$$

that $\psi_{1}(r)=0\{\psi(r)\}(r \rightarrow \infty)$ and that for $r \geqq r_{0}, 1 / \psi_{2}(r)$ is positive, monotonic decreasing, and a convex function of $\log r$. Then if $0<\delta<1$ and $\epsilon>0$ we have

$$
\begin{aligned}
\text { lower log-dens } E\left\{\log \frac{m(r)}{M(r)}>-(1+\epsilon) \delta^{-1}(2-\delta) \frac{1}{2} \pi^{2} \psi_{2}(r)\right. & \} \\
& \geqq 1-\delta
\end{aligned}
$$

We call a function $L(x)$ continuous and positive for $x \geqq 0$, slowly oscillating, if for each fixed $\lambda>0$,

[^0]
[^0]: ${ }^{1}$ This, in the main, is an abstract of a thesis submitted for the degree of Ph.D. in the University of London, under the supervision of Professor W. K. Hayman.

