ON THE EXISTENCE OF INVARIANT MEASURES

BY FRED B. WRIGHT¹

Communicated by P. R. Halmos, July 19, 1960

Let T be a measurable transformation on a measure space (Ω, α, P) , with $0 < P(\Omega) < \infty$. Call T absolutely continuous if P(A) = 0 implies $P(T^{-1}A) = 0$. The transformation T is said to have the Birkhoff recurrence property if, for each $A \in \alpha$, $\lim_{n\to\infty} (1/n) \sum_{J=0}^{n-1} \chi_A(T^{j}\omega)$ exists for almost all $\omega \in \Omega$. It has been shown that if T is absolutely continuous and has the Birkhoff recurrence property, then there exists a non-negative, finite, countably additive measure Q on α such that (i) $Q \ll P$, (ii) Q and P agree on invariant sets, (iii) $Q(A) = Q(T^{-1}A)$ for each $A \in \alpha$ [3]. In this paper we prove the following result.

THEOREM. If T is an absolutely continuous measurable transformation on (Ω, α, P) , where $0 < P(\Omega) < \infty$, then there exists a non-negative, finite, finitely additive measure Q with the following properties: (i) P(A)= 0 implies Q(A) = 0; (ii) Q and P agree on invariant sets; (iii) Q(A)= $Q(T^{-1}A)$ for each $A \in \alpha$.

We shall only outline the proof here. Let \mathfrak{B} be the collection of all invariant sets; that is, $B \in \mathfrak{B}$ if and only if $B = T^{-1}B$. Then \mathfrak{B} is a σ -subalgebra of \mathfrak{A} . Consider the real algebras $L^{\infty}(\mathfrak{A})$ and $L^{\infty}(\mathfrak{B})$, and represent them as the algebras R(X) and R(Y), respectively, of all continuous real-valued functions on the extremally disconnected, compact, Hausdorff spaces X and Y. The Boolean algebras E(X)and E(Y) of idempotents in R(X) and R(Y) are both complete. Moreover there is a natural isomorphism of R(Y) into R(X) which maps E(Y) into E(X). The dual of this is a continuous mapping π of X onto Y, and the completeness of E(Y) assures that the mapping is an open mapping. Theorems of Gleason [1] and Halmos [2] assert that π has many cross-sections.

For any $f \in R(X)$ define functions Mf and mf on Y by setting $Mf(y) = lub \{f(x): \pi x = y\}$ and $mf(y) = glb \{f(x): \pi x = y\}$. Since π is open, both Mf and mf are in R(Y). Call a linear transformation $\mu: R(X) \rightarrow R(Y)$ a generalized mean if $mf \leq \mu f \leq Mf$ for each $f \in R(X)$. Every cross-section of π gives a mean that is a homomorphism. An absolutely continuous T induces a linear transformation t of R(X) into itself. A generalized mean μ will be called invariant if $\mu tf = \mu f$ for each $f \in R(X)$. The set of all means is a nonempty, compact,

¹ Research Fellow of the Alfred P. Sloan Foundation.