A GENERALIZATION OF H-SPACES¹

BY BRUNO HARRIS

Communicated by Hans Samelson, August 2, 1960

- 1. Introduction. An *H*-space is a topological space *S* with a continuous multiplication $f: S \times S \rightarrow S$, $f(x, y) = x \cdot y$, having a two-sided unit e: thus $e \cdot x = x$, $x \cdot e = x$ for all x in S. We shall consider spaces S with a more general type of product: namely, instead of assuming a two-sided unit e, we assume only
 - (i) $e \cdot x = x$ for all x.
- (ii) There is a continuous map $\sigma: S \rightarrow S$ such that $x \cdot \sigma(x) = x$ for all x. Thus if $\sigma(x) = e$ for all x, we have an H-space.

A general class of such spaces S is constructed as follows: let G be a topological group, σ a continuous endomorphism, K a closed subgroup of G contained in (not necessarily equal to) the fixed point set of σ ; let S = G/K, the space of left cosets, and define a product in S: $f(g_1K, g_2K) = g_1\sigma(g_1^{-1})g_2K$. Another way of looking at this product is the following: since G acts on the left on G/K, any continuous map q: G/K into G, defines a product on G/K by $f(g_1K, g_2K) = g(g_1K)g_2K$. In the above situation we have taken the map $q(gK) = g\sigma(g^{-1})$. The product then satisfies (i) and (ii) above, with $\sigma(gK) = \sigma(g)K$. Note that if σ maps all of G onto the identity element, then S=G and the product is just the product in G. We also remark that if q is any crosssection of G/K into G (i.e., $\pi q = identity$ map of G/K where $\pi: G$ $\rightarrow G/K$, $\pi(g) = gK$) and q(eK) = e, the identity element of G, then the multiplication $g_1K \cdot g_2K = q(g_1K)g_2K$ makes G/K an H-space. Such a q is obtained, for instance, if $\sigma^2 = \sigma$, $K = \sigma(G)$, and $q = g\sigma(g^{-1})$. We shall be more interested, however, in the case $\sigma^2 = I$, the identity map: if, further, K contains the identity component of the fixed point set of σ , then S = G/K is called a symmetric space. The cohomology algebra, with real coefficients, of symmetric spaces of compact Lie groups G, is completely known (see [1; 2]); however, with coefficients a field of characteristic p > 0 less is known and our results when specialized to this case, seem to be new. On taking G = SO(n+1)the rotation group, K = SO(n), $G/K = S^n$ and n odd, the product in the sphere S^n is essentially the same² as one defined by Hopf (in a purely geometric way) in his paper [3] which introduced the subject of H-spaces.

¹ Work supported in part by an N.S.F. grant.

² Actually Hopf's product, as is easy to see, is $(g_1K, g_2K) \rightarrow g_1\sigma(g_1^{-1})\sigma(g_2)K$, but study of this latter product is equivalent to study of the former.