A GENERALIZATION OF H-SPACES ${ }^{1}$

BY BRUNO HARRIS
Communicated by Hans Samelson, August 2, 1960

1. Introduction. An H-space is a topological space S with a continuous multiplication $f: S \times S \rightarrow S, f(x, y)=x \cdot y$, having a two-sided unit e : thus $e \cdot x=x, x \cdot e=x$ for all x in S. We shall consider spaces S with a more general type of product: namely, instead of assuming a two-sided unit e, we assume only
(i) $e \cdot x=x$ for all x.
(ii) There is a continuous map $\sigma: S \rightarrow S$ such that $x \cdot \sigma(x)=x$ for all x. Thus if $\sigma(x)=e$ for all x, we have an H-space.

A general class of such spaces S is constructed as follows: let G be a topological group, σ a continuous endomorphism, K a closed subgroup of G contained in (not necessarily equal to) the fixed point set of σ; let $S=G / K$, the space of left cosets, and define a product in $S: f\left(g_{1} K, g_{2} K\right)=g_{1} \sigma\left(g_{1}^{-1}\right) g_{2} K$. Another way of looking at this product is the following: since G acts on the left on G / K, any continuous map $q: G / K$ into G, defines a product on G / K by $f\left(g_{1} K, g_{2} K\right)=q\left(g_{1} K\right) g_{2} K$. In the above situation we have taken the $\operatorname{map} q(g K)=g \sigma\left(g^{-1}\right)$. The product then satisfies (i) and (ii) above, with $\sigma(g K)=\sigma(g) K$. Note that if σ maps all of G onto the identity element, then $S=G$ and the product is just the product in G. We also remark that if q is any crosssection of G / K into G (i.e., $\pi q=$ identity map of G / K where $\pi: G$ $\rightarrow G / K, \pi(g)=g K)$ and $q(e K)=e$, the identity element of G, then the multiplication $g_{1} K \cdot g_{2} K=q\left(g_{1} K\right) g_{2} K$ makes G / K an H-space. Such a q is obtained, for instance, if $\sigma^{2}=\sigma, K=\sigma(G)$, and $q=g \sigma\left(g^{-1}\right)$. We shall be more interested, however, in the case $\sigma^{2}=I$, the identity map: if, further, K contains the identity component of the fixed point set of σ, then $S=G / K$ is called a symmetric space. The cohomology algebra, with real coefficients, of symmetric spaces of compact Lie groups G, is completely known (see $[1 ; 2]$); however, with coefficients a field of characteristic $p>0$ less is known and our results when specialized to this case, seem to be new. On taking $G=\mathrm{SO}(n+1)$ the rotation group, $K=\mathrm{SO}(n), G / K=S^{n}$ and n odd, the product in the sphere S^{n} is essentially the same ${ }^{2}$ as one defined by Hopf (in a purely geometric way) in his paper [3] which introduced the subject of H-spaces.

[^0]
[^0]: ${ }^{1}$ Work supported in part by an N.S.F. grant.
 ${ }^{2}$ Actually Hopf's product, as is easy to see, is $\left(g_{1} K, g_{2} K\right) \rightarrow g_{1} \sigma\left(g_{1}{ }^{-1}\right) \sigma\left(g_{2}\right) K$, but study of this latter product is equivalent to study of the former.

