
MATRICES OF ZEROS AND ONES 

H. J. RYSER1 

Let A be a. matrix of m rows and n columns and let the entries of 
A be the integers 0 and 1. We call such a matrix a (0, 1) -matrix of 
size m by n. The 2mn (0, 1)-matrices of size m by n play a funda
mental role in a wide variety of combinatorial investigations. One 
of the chief reasons for this is the following. Let X be a set of n ele
ments Xi, X2, • • • , xn and let Xi, X2, • • • , Xm be m subsets of X. Let 
dij= 1 if Xj is a member of Xi and let 0,7 = 0 if Xj is not a member of 
Xi. The a»/s yield a (0, 1)-matrix 4 = [a»y] of size w by w called the 
incidence matrix for the subsets Xi, X2, • • • , Xm of X. The l 's in 
row i oî A specify the elements that belong to set Xi and the l 's 
in column j of A specify the sets that contain element x3-. The matrix 
A characterizes the m subsets Xi, X2, • • • , Xm of the set X. 

Let A be a (0, 1)-matrix of size m by n. het the sum of row i of 
A be denoted by r» and let the sum of column j of 4̂ be denoted by Sj. 
We call 

R = ( r i , r 2, • • • , f m) 

the row sum vector and 

S = (s 1, S2, • • • , .?n) 

the column sum vector oi A. If r denotes the total number of l 's in A, 
then it is clear that 

m n 

i = i y=i 

The vectors i£ and 5 determine a class 

21 = « (£ , S), 

consisting of all (0, 1)-matrices of size m by n with row sum vector 
R and column sum vector 5. In this paper we summarize portions of 
the extensive literature on (0, l)-matrices and give special emphasis 
to problems dealing with the class 21 (R, 5) . We discuss diversified 
topics including traces, term ranks, widths, heights, and combina
torial designs. A good deal of the subject matter is still in its infancy 
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