MATRICES OF ZEROS AND ONES

H. J. RYSER ${ }^{1}$

Let A be a matrix of m rows and n columns and let the entries of A be the integers 0 and 1 . We call such a matrix a (0,1)-matrix of size m by n. The $2^{m n}(0,1)$-matrices of size m by n play a fundamental role in a wide variety of combinatorial investigations. One of the chief reasons for this is the following. Let X be a set of n elements $x_{1}, x_{2}, \cdots, x_{n}$ and let $X_{1}, X_{2}, \cdots, X_{m}$ be m subsets of X. Let $a_{i j}=1$ if x_{j} is a member of X_{i} and let $a_{i j}=0$ if x_{j} is not a member of X_{i}. The $a_{i j}$'s yield a $(0,1)$-matrix $A=\left[a_{i j}\right]$ of size m by n called the incidence matrix for the subsets $X_{1}, X_{2}, \cdots, X_{m}$ of X. The 1's in row i of A specify the elements that belong to set X_{i} and the 1 's in column j of A specify the sets that contain element x_{j}. The matrix A characterizes the m subsets $X_{1}, X_{2}, \cdots, X_{m}$ of the set X.

Let A be a (0,1)-matrix of size m by n. Let the sum of row i of A be denoted by r_{i} and let the sum of column j of A be denoted by s_{j}. We call

$$
R=\left(r_{1}, r_{2}, \cdots, r_{m}\right)
$$

the row sum vector and

$$
S=\left(s_{1}, s_{2}, \cdots, s_{n}\right)
$$

the column sum vector of A. If τ denotes the total number of 1 's in A, then it is clear that

$$
\tau=\sum_{i=1}^{m} r_{i}=\sum_{j=1}^{n} s_{j} .
$$

The vectors R and S determine a class

$$
\mathfrak{A}=\mathfrak{A}(R, S),
$$

consisting of all (0,1)-matrices of size m by n with row sum vector R and column sum vector S. In this paper we summarize portions of the extensive literature on (0,1)-matrices and give special emphasis to problems dealing with the class $\mathfrak{H}(R, S)$. We discuss diversified topics including traces, term ranks, widths, heights, and combinatorial designs. A good deal of the subject matter is still in its infancy

[^0]
[^0]: An address delivered before the Detroit meeting of the Society on November 27, 1959, by invitation of the Committee to Select Hour Speakers for Western Sectional Meetings; received by the editors June 22, 1960.
 ${ }^{1}$ The present research was supported in part by the Office of Ordnance Research.

