FIXED POINT FREE INVOLUTIONS AND EQUIVARIANT MAPS¹

P. E. CONNER AND E. E. FLOYD

1. Preliminaries. We are concerned with involutions without fixed points, together with equivariant maps connecting such involutions. An involution T is a homeomorphism of period 2 of a Hausdorff space X onto itself; that is, $T^2(x) = x$ for all $x \in X$.

There is associated with an involution T on X the orbit space X/T, obtained by identifying x with T(x) for all $x \in X$. Denote by $\nu: X \to X/T$ the decomposition map. If T is fixed point free, then $\nu: X \to X/T$ is a local homeomorphism. The map ν is always both open and closed.

In addition to fixed point free involutions we also study equivariant maps. If spaces X, X' carry involutions T, T' respectively, then a map $m: X \rightarrow X'$ is equivariant provided that m(T(x)) = T'(m(x)) for all $x \in X$. An equivariant map $m: X \rightarrow X'$ induces a map $M: X/T \rightarrow X'/T'$.

The most fundamental involution without fixed points is the antipodal involution A on the *n*-sphere S^n , given by $A(x_1, \dots, x_{n+1}) = (-x_1, \dots, -x_{n+1})$. When we speak of S^n as carrying a fixed point free involution, it is to be understood that we refer to A. For S^n , we have the classical body of results of Lyusternik-Schnirelmann and Borsuk-Ulam. Some of these well-known results are summarized in the following.

(1.1) The following are true for every n:

(i) there is no equivariant map of S^{n+1} into S^n ;

(ii) every equivariant map of S^n into itself is of odd degree; in particular, it is essential;

(iii) the Lyusternik-Schnirelmann category of $S^n/A = P^n$ is n;

(iv) for every covering of S^n by n+1 closed sets A_1, \dots, A_{n+1} , some set A_i contains an antipodal pair;

(v) for every map $f: S^n \rightarrow R^n$ there is a point $x \in S^n$ for which f(x) = f(A(x)).

An address delivered before the East Lansing meeting of the Society by P. E. Conner under the title *Involutions and equivariant maps*, on September 2, 1960, by invitation of the Committee to Select Hour Speakers for Summer and Annual Meetings; received by the editors June 24, 1960.

¹ This research was supported by the United States Air Force through the Air Force Office of Scientific Research of the Air Research and Development Command, under contract AF 49(638)-72 at the University of Virginia.