CLIFFORD PARALLELS IN ELLIPTIC (2n-1)-SPACE AND ISOCLINIC *n*-PLANES IN EUCLIDEAN 2n-SPACE¹

BY YUNG-CHOW WONG

Communicated by Irving Kaplansky, March 18, 1960

An elliptic space is a projective space turned into a metric space by according a special role to an arbitrarily chosen but fixed nondegenerate imaginary hyperquadric. Let p_1 , p_2 be any two points in the elliptic space. Then the distance between p_1 , p_2 is defined as $(1/2(-1)^{1/2}) \log (p_1 p_2 q_1 q_2)$, where q_1, q_2 are the two points at which the line $p_1 p_2$ intersects the hyperquadric and $(p_1 p_2 q_1 q_2)$ denotes the cross-ratio of these four collinear points. It follows at once from the definition that (i) the distance (between any two real points) may be taken to be d or $\pi - d$ with $0 \le d \le \pi$, (ii) distances on the same straight line are additive, and (iii) the total length of any straight line is π .

It is well known that in an elliptic space of dimension 3, the concept of Clifford parallelism exists which has many interesting properties (see, for example, Klein [5]). A similar concept of parallelism for elliptic spaces of dimension ≥ 3 is the concept of Clifford-parallel (n-1)-planes in an elliptic space, El^{2n-1} , of dimension 2n-1. We define this as follows:

In an El^{2n-1} , two (n-1)-planes A and B are said to be *Clifford*parallel if the distance to B from any point in A is the same. The relation between two (n-1)-planes of being Clifford-parallel is reflexive, symmetric but not transitive. A set of (n-1)-planes in El^{2n-1} is called a maximal set of mutually Clifford-parallel (n-1)planes if every (n-1)-plane in the set is Clifford-parallel to every other (n-1)-plane in the set, and if the set is not a subset of a larger set of mutually Clifford-parallel (n-1)-planes. A maximal set of mutually Clifford-parallel (n-1)-planes in El^{2n-1} is said to form a foliation (partial foliation) of El^{2n-1} if through each point of El^{2n-1} there passes one and only one (at most one) (n-1)-plane of the set.

Existence of maximal sets of mutually Clifford-parallel (n-1)planes in any El^{2n-1} is established by the following theorem:

THEOREM 1. In an $El^{2n-1}(n > 1)$, there are two or more maximal sets of mutually Clifford-parallel (n-1)-planes containing any given (n - 1)-plane. If n is odd, there exist only 1-dimensional² maximal sets. If

¹ Some of the results contained in this paper were obtained while the author was participating in a National Science Foundation Research Project at the University of Chicago in 1959.

² We call a set of (n-1)-planes *p*-dimensional if it depends on *p* parameters.