THE WEAK HAUPTVERMUTUNG FOR CELLS AND SPHERES

BY HERMAN GLUCK
Communicated by A. W. Tucker, March 28, 1960

Theorem. If P and Q are two triangulations of the n-sphere (closed n-cell), there is a third triangulation M which can be obtained from either by subdivision. In fact, M can be obtained from either P or Q by subdivision of a single n-simplex.

The following result, obtained recently by M. Brown [1], is the principal tool of both proofs.

Lemma. Let S^{n-1} be an $n-1$ sphere embedded in the n-sphere S^{n}. If S^{n-1} has a neighborhood in S^{n} homeomorphic to $S^{n-1} \times[-1,1]$, in which S^{n-1} is embedded as $S^{n-1} \times 0$, then the closures of the complementary domains of S^{n-1} in S^{n} are both closed n-cells.

Fig. 1
We prove the theorem first for the n-sphere. Let p be an n-simplex of P, q an n-simplex of Q. Let p^{\prime} be a smaller, concentric n-simplex inside p, and let P^{\prime} be obtained from P by drawing p^{\prime} inside p and triangulating the region $\left(S^{n-1} \times[0,1]\right)$ between the boundaries of p and p^{\prime}. Similarly for q^{\prime} and Q^{\prime}. The boundaries of $\left|p^{\prime}\right|$ and $\left|q^{\prime}\right|$ have neighborhoods as required in the lemma, so they split $\left|P^{\prime}\right|$, resp. $\left|Q^{\prime}\right|$, into two closed n-cells, one of which is $\left|p^{\prime}\right|$, resp. $\left|q^{\prime}\right|$, and the

