RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

SOLUTION OF THE EQUATION $(pz+q)e^{z}=rz+s$

BY E. M. WRIGHT

Communicated by E. F. Beckenbach, January 22, 1960

An accurate knowledge of the roots of the equation in the title plays a part in the solution and application of linear differencedifferential equations and in other theories. If pr=0, it is easy to transform our equation into $ze^z = a$, an equation dealt with in [1]. If $pr \neq 0$ and p, q, r, s are real, our equation transforms into one or other of the equations

(1)
$$(z+b)e^{z+a} = -(z-b)$$

and

(2)
$$(z+b)e^{z+a} = z-b,$$

where a, b are real.

We write z = x + iy, w = u + iv, where x, y, u, v are real. We cut the z-plane along the real axis from z = -b to z = b and write

(3)
$$w = z - \log \{(z - b)/(z + b)\},$$

taking the logarithm real on the real axis outwith the cut, and writing z=z(w) for the inverse function defined by (3). Clearly

$$\frac{dw}{dz} = \frac{z^2 - b^2 - 2b}{z^2 - b^2}$$

vanishes when $z = \zeta$, where $\zeta^2 = b^2 + 2b$. We write

$$\omega = w(\zeta) = \zeta - \log \left\{ (\zeta - b)/(\zeta + b) \right\} = \zeta + \log(b + 1 + \zeta).$$

If b > 0, we have $\omega = \pm (b^2 + 2b)^{1/2} + \log \{b+1+(b^2+2b)^{1/2}\}$. If -2 < b < 0 and we write $b + 1 = \cos \theta$, $0 < \theta < \pi$, we have $\zeta = \pm i \sin \theta$, $\omega = \pm i(\theta + \sin \theta)$, so that $0 < |\omega| < \pi$. If $b \leq -2$, we have $\omega = \pm \{(b^2+2b)^{1/2}+\log (|b+1|-(b^2+2b)^{1/2})\}\pm \pi i$. If b=-2, we have $\zeta = 0$ and $\omega = \pm i\pi$. We observe that, for any fixed *b*, there may be two or four values of ω , but all have the same modulus.

The inverse function z(w) is uniquely defined if either (i) $|w| > |\omega|$