RESEARCH ANNOUNCEMENTS

The purpose of this department is to provide early announcement of significant new results, with some indications of proof. Although ordinarily a research announcement should be a brief summary of a paper to be published in full elsewhere, papers giving complete proofs of results of exceptional interest are also solicited.

SOLUTION OF THE EQUATION $(p z+q) e^{z}=r z+s$

BY E. M. WRIGHT

Communicated by E. F. Beckenbach, January 22, 1960
An accurate knowledge of the roots of the equation in the title plays a part in the solution and application of linear differencedifferential equations and in other theories. If $p r=0$, it is easy to transform our equation into $z e^{z}=a$, an equation dealt with in [1]. If $p r \neq 0$ and p, q, r, s are real, our equation transforms into one or other of the equations

$$
\begin{equation*}
(z+b) e^{z+a}=-(z-b) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
(z+b) e^{z+a}=z-b \tag{2}
\end{equation*}
$$

where a, b are real.
We write $z=x+i y, w=u+i v$, where x, y, u, v are real. We cut the z-plane along the real axis from $z=-b$ to $z=b$ and write

$$
\begin{equation*}
w=z-\log \{(z-b) /(z+b)\} \tag{3}
\end{equation*}
$$

taking the logarithm real on the real axis outwith the cut, and writing $z=z(w)$ for the inverse function defined by (3). Clearly

$$
\frac{d w}{d z}=\frac{z^{2}-b^{2}-2 b}{z^{2}-b^{2}}
$$

vanishes when $z=\zeta$, where $\zeta^{2}=b^{2}+2 b$. We write

$$
\omega=w(\zeta)=\zeta-\log \{(\zeta-b) /(\zeta+b)\}=\zeta+\log (b+1+\zeta)
$$

If $b>0$, we have $\omega= \pm\left(b^{2}+2 b\right)^{1 / 2}+\log \left\{b+1+\left(b^{2}+2 b\right)^{1 / 2}\right\}$. If $-2<b$ <0 and we write $b+1=\cos \theta, 0<\theta<\pi$, we have $\zeta= \pm i \sin \theta$, $\omega= \pm i(\theta+\sin \theta)$, so that $0<|\omega|<\pi$. If $b \leqq-2$, we have $\omega= \pm\left\{\left(b^{2}+2 b\right)^{1 / 2}+\log \left(|b+1|-\left(b^{2}+2 b\right)^{1 / 2}\right)\right\} \pm \pi i$. If $b=-2$, we have $\zeta=0$ and $\omega= \pm i \pi$. We observe that, for any fixed b, there may be two or four values of ω, but all have the same modulus.

The inverse function $z(w)$ is uniquely defined if either (i) $|w|>|\omega|$

