BOOK REVIEWS

Ramification theoretic methods in algebraic geometry. By Shreeram Abhyankar, Princeton, Princeton University Press, 1959. 7+96 pp. \$2.75.

Abhyankar uses certain special definitions. A local ring (R, M) is any ring R with unit having a single maximal ideal M. Here R need not be Noetherian. A semi-local ring $(S: M_1, \dots, M_t)$ is defined similarly. Finally, a domain A is called normal if it is integrally closed in its quotient field.

The basic situation of the book finds a normal local domain (R, M) with field of quotients K, and a finite algebraic extension K' of K. Then the integral closure S of R in K' is a semi-local domain $(S: N_1, \dots, N_t)$ with a finite number of maximal ideals N_1, \dots, N_t . The ideal MS is given by an expression of the form $MS = Q_1 \cap \dots \cap Q_t = Q_1 \cdots \dots Q_t$, where Q_1, \dots, Q_t are primary for N_1, \dots, N_t respectively. The normal local domains $R_1, \dots, R_t = S_{N_1}, \dots, S_{N_t}$ are said to *lie over* R. For each $i = 1, \dots, t, R_i \cap K = R$. So R, which is uniquely determined by R_i , is said to *lie below* R_i . Let $M_i = N_i R_i$ be the maximal ideal of R_i . Then (R_i, M_i) is said to be unramified over (R, M) if the following two conditions are satisfied:

(1) (a) R_i/M_i is a separable extension of R/M,

(b)
$$MR_i = M_i$$
.

Otherwise (R_i, M_i) is ramified over (R, M). The integral closure S is *unramified* over R if all the domains lying over R are unramified; otherwise it is ramified.

If S' is any domain with quotient field K' such that $R \subset S' \subset S$, then the *discriminant ideal* D(S'/R) is defined to be the ideal of R generated by all the discriminants $D_{K'/K}(w_1, \dots, w_n)$, where w_1, \dots, w_n is any basis of K'/K lying in S'. The domain S' is also semi-local with, say, maximal ideals M'_1, \dots, M'_s . We have then the general discriminant theorem of Krull which states that:

$$\sum_{i=1}^{S} \left[(S'/M_i') : (R/M) \right]_S \leq \left[K' : K \right]$$

with equality if and only if D(S'/R) = R. In the latter case, S' = S, S is a free R-module, and is unramified over R.

Suppose further that K'/K is a Galois extension (i.e., finite normal separable algebraic). Let G = G(K'/K) be its Galois group. Then G permutes the domains R_1, \dots, R_t transitively. The splitting group