FOURIER-STIELTJES TRANSFORMS OF MEASURES ON INDEPENDENT SETS

BY WALTER RUDIN¹

Communicated March 30, 1960

A subset E of the real line R will be called *independent* if the following is true: for every choice of distinct points x_1, \dots, x_k in Eand of integers n_1, \dots, n_k , not all 0, we have $n_1x_1 + \dots + n_kx_k \neq 0$. The main result of this note is

THEOREM I. There exists an independent, compact, perfect set Q in R which carries a positive measure σ whose Fourier-Stieltjes transform

$$\int_{-\infty}^{\infty} e^{ixy} d\sigma(x) \qquad (y \in R)$$

tends to 0 as $|y| \rightarrow \infty$.

Sketch of proof. It is known ([5, Theorem IV] and [6, p. 25]) that there is a compact perfect set P in R which is not a basis (i.e., the set of all finite sums $\sum n_i x_i$, with $x_i \in P$ and integers n_i , does not cover R and hence has measure 0) but which carries a positive measure μ whose F.S. transform vanishes at infinity. A certain deformation of P will yield our set Q.

P is constructed as the intersection of a sequence of sets E_r which are unions of 2^r disjoint intervals $I_{j,r}$. Set $P_{j,r} = P \cap I_{j,r}$, for $1 \leq j \leq 2^r$.

REMARK 1. Since P is not a basis, the set of all points $w = (w_1, \dots, w_k)$ in \mathbb{R}^k such that $\sum_{i=1}^k n_j(x_j + w_j) = 0$ for some choice of x_1, \dots, x_k in P is, for each choice of integers n_1, \dots, n_k , a closed set of measure 0 (a union of certain hyperplanes).

REMARK 2. Since there exists a function in $L^1(R)$ whose Fourier transform is 1 on $P_{j,r}$ and is 0 on the rest of P, we have

$$\lim_{|y|\to\infty}\int_{P_{j,r}}e^{ixy}d\mu(x)=0\qquad (1\leq j\leq 2^r).$$

Choose a sequence $\{c_r\}$, $0 < c_r < 1$, such that $\prod_0^{\infty} c_r > 0$. Put $f_0(x) = x$, and inductively define a sequence of functions f_r on P, of the form

(1)
$$f_r(x) = x + w_{j,r} \qquad (x \in P_{j,r}).$$

Assume f_r is constructed, and has the property that the condition

¹ Research Fellow of the Alfred P. Sloan Foundation.