POLYNOMIALS DEFINED BY A DIFFERENCE SYSTEM

BY GLEN BAXTER¹

Communicated by Paul C. Rosenbloom, January 21, 1960

This note is concerned with orthogonal polynomials on the unit circle and their use in probability theory.

Let $f(t) \ge 0$ (not zero a.e.) be integrable on $-\pi \le t \le \pi$; then, according to Szegö [1], a system of polynomials $\{\phi_n(z)\}$ orthogonal with respect to f(t) on $-\pi \le t \le \pi$ are uniquely determined by

(i) $\phi_n(z)$ is a polynomial of degree *n* in which the coefficient of z^n is real and positive,

(ii) $(1/2\pi)\int_{-\pi}^{\pi}\phi_n(z)\phi_m(z)f(t)dt = \delta_{nm}, (z = e^{it}).$

Recent results [2; 3; 4] have shown the importance of the Szegö polynomials in discussing fluctuations of sums $S_n = X_1 + \cdots + X_n$, $(n = 0, 1, \cdots)$, of independent, identically distributed random variables X_j . The results derived directly from the theory of the polynomials (1) were necessarily restricted to the case of symmetric, integral-valued random variables. We consider here an alternative definition of the polynomials (1) designed to allow a natural generalization of these results to nonsymmetric, not necessarily discretevalued random variables. This approach also seems to have connections with prediction theory.

Let $\{\alpha_n\}$ and $\{\beta_n\}$ be given sequences of complex numbers with $\alpha_n\beta_n\neq 1$ for all n, and let u_0 and v_0 be given constants. Then, the system

(2)
$$u_n(z) - u_{n-1}(z) = \alpha_n z^n v_n(z), v_n(z) - v_{n-1}(z) = \beta_n z^{-n} u_n(z)$$

determines polynomials $u_n(z)$ and $v_n(z)$ of at most degree n in z and 1/z, respectively. The condition $\alpha_n\beta_n \neq 1$ for all n is necessary and sufficient for the existence of $u_n(z)$ and $v_n(z)$ for all n. Let $k_n^2 = \prod_{m=1}^n (1 - \alpha_m \beta_m)^{-1}$, and set

(3)
$$\phi_n(z) = z^n v_n(z)/k_n, \quad \psi_n(z) = z^{-n} u_n(z)/k_n,$$

where k_n is one of the square roots of k_n^2 (we allow some arbitrariness here). We will connect $\phi_n(z)$ and $\psi_n(z)$ with the Szegö polynomials.

The following notation will be used consistently below. Let f(t) be integrable on $-\pi \leq t \leq \pi$ with Fourier coefficients

¹ This research was supported by the U. S. Air Force.