POLYNOMIALS DEFINED BY A DIFFERENCE SYSTEM

BY GLEN BAXTER ${ }^{1}$
Communicated by Paul C. Rosenbloom, January 21, 1960

This note is concerned with orthogonal polynomials on the unit circle and their use in probability theory.

Let $f(t) \geqq 0$ (not zero a.e.) be integrable on $-\pi \leqq t \leqq \pi$; then, according to Szegö [1], a system of polynomials $\left\{\phi_{n}(z)\right\}$ orthogonal with respect to $f(t)$ on $-\pi \leqq t \leqq \pi$ are uniquely determined by
(i) $\phi_{n}(z)$ is a polynomial of degree n in which the coefficient of z^{n} is real and positive,
(ii) $(1 / 2 \pi) \int_{-\pi}^{\pi} \phi_{n}(z) \phi_{m}(z) f(t) d t=\delta_{n m},\left(z=e^{i t}\right)$.

Recent results [2;3;4] have shown the importance of the Szegö polynomials in discussing fluctuations of sums $S_{n}=X_{1}+\cdots$ $+X_{n},(n=0,1, \cdots)$, of independent, identically distributed random variables X_{j}. The results derived directly from the theory of the polynomials (1) were necessarily restricted to the case of symmetric, integral-valued random variables. We consider here an alternative definition of the polynomials (1) designed to allow a natural generalization of these results to nonsymmetric, not necessarily discretevalued random variables. This approach also seems to have connections with prediction theory.

Let $\left\{\alpha_{n}\right\}$ and $\left\{\beta_{n}\right\}$ be given sequences of complex numbers with $\alpha_{n} \beta_{n} \neq 1$ for all n, and let u_{0} and v_{0} be given constants. Then, the system

$$
\begin{align*}
u_{n}(z)-u_{n-1}(z) & =\alpha_{n} z^{n} v_{n}(z) \\
v_{n}(z)-v_{n-1}(z) & =\beta_{n} z^{-n} u_{n}(z) \tag{2}
\end{align*}
$$

determines polynomials $u_{n}(z)$ and $v_{n}(z)$ of at most degree n in z and $1 / z$, respectively. The condition $\alpha_{n} \beta_{n} \neq 1$ for all n is necessary and sufficient for the existence of $u_{n}(z)$ and $v_{n}(z)$ for all n. Let k_{n}^{2} $=\prod_{m=1}^{n}\left(1-\alpha_{m} \beta_{m}\right)^{-1}$, and set

$$
\begin{equation*}
\phi_{n}(z)=z^{n} v_{n}(z) / k_{n}, \quad \psi_{n}(z)=z^{-n} u_{n}(z) / k_{n} \tag{3}
\end{equation*}
$$

where k_{n} is one of the square roots of k_{n}^{2} (we allow some arbitrariness here). We will connect $\phi_{n}(z)$ and $\psi_{n}(z)$ with the Szegö polynomials.

The following notation will be used consistently below. Let $f(t)$ be integrable on $-\pi \leqq t \leqq \pi$ with Fourier coefficients
${ }^{1}$ This research was supported by the U. S. Air Force.

