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This note is concerned with orthogonal polynomials on the unit 
circle and their use in probability theory. 

Let / ( / ) ^ 0 (not zero a.e.) be integrable on — 7r^/^7r; then, ac
cording to Szegö [ l ] , a system of polynomials {ct>n(z)} orthogonal 
with respect to ƒ(/) on — ir^t^ir are uniquely determined by 

(i) (l>n(z) is a polynomial of degree n in which the coefficient of 
(1) zn is real and positive, 

(ii) ( l / 2 i r ) / ; ^ B (« ) f c (« ) / (0* = 8n«, (* = «"). 
Recent results [2 ; 3 ; 4 ] have shown the importance of the Szegö 

polynomials in discussing fluctuations of sums Sn=Xi-\- • • • 
+Xn, (n — 0, 1, • • • ), of independent, identically distributed random 
variables Xj. The results derived directly from the theory of the 
polynomials (1) were necessarily restricted to the case of symmetric, 
integral-valued random variables. We consider here an alternative 
definition of the polynomials (1) designed to allow a natural general
ization of these results to nonsymmetric, not necessarily discrete-
valued random variables. This approach also seems to have connec
tions with prediction theory. 

Let {an} and {/3n} be given sequences of complex numbers with 
anpn7él for all n, and let u0 and VQ be given constants. Then, the sys
tem 

Un(z) ~ Un-l(z) = <XnZnVn(z)y 

Vn(z) ~ Vn-i(z) = PnZ-nUn(z) 

determines polynomials un(z) and vn(z) of at most degree n in z and 
1/s, respectively. The condition a n /3 n ^l for all n is necessary and 
sufficient for the existence of un(z) and vn(z) for all n. Let kl 
= LCUi (1—«mjSm)""1, and set 

(3) 4>n{z) = ZnVn(z)/kn, ^ n ( « ) = Z~nUn(z)/kn, 

where kn is one of the square roots of kl (we allow some arbitrariness 
here). We will connect <j>n{z) and \l/n(z) with the Szegö polynomials. 

The following notation will be used consistently below. Let ƒ(t) be 
integrable on —w^t^T with Fourier coefficients 
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