REMARKS ON AFFINE SEMIGROUPS ${ }^{1}$

BY A. D. WALLACE
Communicated by Einar Hille, December 28, 1959

A semigroup is a nonvoid Hausdorff space together with a continuous associative multiplication, denoted by juxtaposition. In what follows S will denote one such and it will be assumed that S is compact. It thus entails no loss of generality to suppose that S is contained in a locally convex linear topological space X, but no particular imbedding is assumed. For general notions about semigroups we refer to [3] and for information concerning linear spaces to [2].

It has been known for some time [3] that if X is finite dimensional, if S is convex (recall that S is compact) and if S has a unit (always denoted by u) then the maximal subgroup, H_{u}, which contains u is a subset of the boundary of S relative to X.

Let F denote the boundary of S, K the minimal ideal of S and, for any subset A of S, let

$$
P(A)=\{x \mid x \in S \text { and } x A=A\}
$$

As is customary, $A B$ denotes the set of all products $a b$ with $a \in A$ and $b \in B$ and we generally write x in place of $\{x\}$. It will be convenient to abbreviate $P(S)$ by P. The structure of P is known in the following sense-supposing that $P \neq \square$ the set $P \cap E \neq \square$ and is indeed the set of left units of S, E being the set of idempotents. Moreover, if $e \in P \cap E$ then $P e$ is a maximal subgroup of S and the assignment $(x, y) \rightarrow x y$ is an iseomorphism (topological isomorphism) of $P e \times(P \cap E)$ onto P. The following is a corollary to the principal result of [4]:

Theorem 1. If S is compact and convex and if $S \neq K$ then

$$
P(F)=P(S) \subset F
$$

It should be noticed that if S has a unit then $P=H_{u}$.
The quantifier affine will be applied to S if S is convex and if also $x(t y+(1-t) z)=t x y+(1-t) x z$ and $(t y+(1-t) z) x=t y x+(1-t) z x$ for any x, y and $z \in S$ and any t with $0 \leqq t \leqq 1$. This differs a little from the definition in [1].

This is a particularly pleasant concept because of its generality and because of the host of examples of a simple geometric character. One such is the convex hull of the n roots of unity, using complex

[^0]
[^0]: ${ }^{1}$ This work was supported by a grant from the National Science Foundation.

