SIMULTANEOUS UNIFORMIZATION¹

BY LIPMAN BERS

Communicated December 21, 1959

We shall show that any *two* Riemann surfaces satisfying a certain condition, for instance, any two closed surfaces of the same genus g > 1, can be uniformized by *one* group of fractional linear transformations (Theorem 1). This leads, in conjunction with previous results [2; 3], to the simultaneous uniformization of *all* algebraic curves of a given genus (Theorems 2-4). Theorem 5 contains an application to infinitely dimensional Teichmüller spaces.

1. Let S be an abstract Riemann surface, f a homeomorphism of bounded eccentricity of S onto another such surface S', and [f] the homotopy class of f. We call (S, [f], S') a coupled pair of Riemann surfaces, an even (odd) pair if f preserves (reverses) orientation. Two coupled pairs, (S, [f], S') and $(S_1, [f_1], S')$ are called equivalent if there exist conformal homeomorphisms h and h' with $h(S) = S_1$, h'(S) $= S_1'$, and $[h'fh^{-1}] = [f_1]$.

EXAMPLE. Let *m* be a Beltrami differential on the Riemann surface S_0 , i.e. a differential of type (-1, 1), $m = (\zeta) d\overline{\zeta}/d\zeta$, with $|\mu| \leq \text{const.} < 1$. By S_0^m we denote the surface S_0 with the conformal structure redefined by means of the local metric $|d\zeta + \mu d\overline{\zeta}|$. With *m* there is associated the even pair $(S_0^m, [1], S)$, where 1 is the identity mapping, and the odd pair $(S_0^m, [\iota], \overline{S}_0)$ where ι denotes the natural mapping of S_0 onto its mirror image \overline{S}_0 . The latter is defined by replacing each local uniformization ζ on S_0 by $\overline{\zeta}$.

A group G of Möbius transformations will be called *quasi-Fuchsian* if there exists an oriented Jordan curve γ_G (on the Riemann sphere P) which is fixed under G, and if G is fixed-point-free and properly discontinuous in the domains $I(\gamma_G)$ and $E(\gamma_G)$ interior and exterior to γ_G , respectively. If γ_G is a circle, G is a Fuchsian group.

A quasi-Fuchsian group G is canonically isomorphic to the fundamental groups of the two Riemann surfaces $S_1 = I(\gamma_G)/G$ and $S_2 = E(\gamma_G)/G$, modulo inner automorphisms. If the resulting isomorphisms of the fundamental groups of S_1 onto those of S_2 can be induced by an orientation reversing homeomorphism f of bounded eccentricity, G is called *proper*. In this case [f] is uniquely determined.

¹ This paper represents results obtained at the Institute of Mathematical Sciences, New York University, under the sponsorship of the Office of Ordnance Research, U. S. Army, Contract No. DA-30-069-ORD-2153.