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The classical maximum modulus theorem for solutions of second 
order elliptic equations was recently extended by C. Miranda [4] to 
the case of real higher order elliptic equations in two variables. Previ­
ously Miranda [3] has derived a maximum theorem for solutions of 
the biharmonic equation in two variables. In the case of more vari­
ables it was observed by Agmon-Douglis-Nirenberg [2 ] that a maxi­
mum theorem holds in the special case of elliptic operators with con­
stant coefficients with no lower order terms when the domain of 
definition is a half-space. 

In this note we describe a very general maximum theorem for 
solutions of (complex) higher order elliptic equations in any number 
of variables. We shall obtain various estimates in the maximum 
norm which will contain as a special case the extension of Miranda's 
results to any number of variables. 

We denote by G a bounded domain in En with boundary dG and 
closure G. For a function u(E.Cj(G) we introduce the usual maximum 
norm : 

(1) ||«||y = max max | D u(x) \ • 
|«| Si xeQ 

Here a = (cei, • • • , an) is a multiple index of length \a\ =ai+ • • • 
+an and Da is the corresponding partial derivative. Furthermore, 
for continuous functions u in G we introduce negative maximum 
norms ||w||-^ ( j>0 ) defined in the following manner. Write u in the 
form 

(2) u = E D*fa 
l«l*J 

wi th /«G Cl «'(G). Then: 

(3) N l - i = Infmax | | / a | | o , 

where the infimum is taken over all possible representations of the 
form (2). 

Actually we are going to use negative norms for functions ƒ defined 
on the (sufficiently smooth) boundary. If ƒ has continuous derivatives 
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