SOME STRUCTURAL PROPERTIES OF HAUSDORFF MATRICES

BY B. E. RHOADES

Communicated by Einar Hille, October 10, 1958

- 1. **Definitions.** Let $A = (a_{nk})$ denote an infinite matrix. A is called *conservative* if A has finite norm, $a_k = \lim_{n \to \infty} a_{nk}$ exists for each k, and $\lim_{n \to \infty} \sum_k a_{nk}$ exists. A is called *multiplicative* if A is conservative and $a_k = 0$ for each k.
- s denotes the space of sequences, m the subspace of bounded sequences, and c the subspace of convergent sequences. E_1 is the field of complex numbers and E_{∞} the set of sequences, each of which possesses only a finite number of nonzero terms.

Let x be a fixed sequence. Then $c \oplus x = \{y + x | y \in c\}$.

Let $H = (h_{nk})$ denote a Hausdorff matrix generated by a sequence μ . I shall use (H, μ) to denote the convergence domain of H, H_{μ} to denote the matrix, and $H \sim \mu$ to denote the method.

A matrix $A = (a_{nk})$ is said to be of property P, displacement m (written $c^m A$ is of property P) if, for all $k \ge m$, a_{nk} possesses property P.

A corridor matrix is a matrix with the property that there exists a positive integer r such that $a_{nk}=0$ for all n and k with |n-k|>r. The smallest such r denotes the width of A.

2. Introduction. Let H denote the set of Hausdorff matrices with finite norm. H coincides with the set of conservative Hausdorff matrices as a result of [1, page 256, lines 8-12].

Hille [2] denotes the set of all multiplicative Hausdorff matrices by M, and observes that it forms a commutative Banach algebra which is also an integral domain. Hence the concepts of unit, prime, divisibility, associate, multiple, and factor can be defined in M. Hille and Tamarkin [3, p. 576; 4, p. 907] observed that every moment function $\mu(z)$ of the form $\mu(z) = (z-a)/(z+b)$, $\Re(a) > 0$, $\Re(b) > 0$, is prime in M; i.e., $H \sim \mu$ is not equivalent to convergence, but includes only methods that are equivalent to convergence. Hille mentioned this fact in [2, p. 422], and again raised the open question as to whether all primes in M are of this form.

From Hille's definition of a prime moment function, a regular Hausdorff matrix H with the property that $(H, \mu) = c \oplus x$ for some unbounded sequence x would have a moment function $\mu(z)$ which would be a prime element of M. The results stated in this paper show that it is impossible to construct a Hausdorff matrix $H \in H$